基于火災(zāi)隨機(jī)性的高大空間煙氣溫升研究
[Abstract]:As an important architectural form, tall space architecture is widely used in architectural design, such as waiting hall, terminal building, auditorium and so on. It has large scale, high space, special structure and high fire risk. New requirements are put forward for fire prevention and rescue. Fire smoke temperature rise will affect the building structure safety, personnel evacuation, fire rescue and so on, and the fire development is a process of certainty and randomness, but its randomness is not random and irregular. The random factors in the process of fire development generally follow a certain statistical law. Therefore, it is of great practical significance to study the smoke temperature rise of tall space buildings under the action of fire randomness. In this paper, the influence of various factors on flue gas temperature rise in large space was studied by means of variance analysis. The results show that the most significant factor affecting the flue gas temperature in large space is the power of the fire source. In the randomness analysis, the randomness of the parameters affecting the power of the fire source should be emphasized. Based on the theory of fire dynamics and solid fire experiments, the characteristics of flue gas temperature rise in large space are studied. The experimental results show that the temperature fluctuation in the flame zone is greater than that in the plume zone, and the buoyancy plume region increases with the plume height. The temperature is decreasing gradually. In the roof jet area, with the space point far away from the central line of the fire source, the flue gas temperature shows a decreasing trend, with obvious non-uniform distribution characteristics. At the same time, according to the experimental results, the applicability of parameterized temperature rise model in predicting fire smoke temperature rise in large space is verified. In the analysis of the randomness of temperature rise in large space, the parameters affecting temperature rise are divided into deterministic parameters and random parameters, and the probability density function of random parameter distribution is studied. Through investigation and investigation, the normal distribution of fire load density clothing for tall and large space buildings of station type is obtained. Through the reference and analysis of data, the uniform distribution of material flammability coefficient, the logarithmic normal distribution of fire overfire area and fire growth coefficient clothing are obtained. According to the probability distribution of random parameters, the random scene group is determined by Latin hypercube sampling method. The maximum heat release rate, the equivalent diameter of the fire source, the mean value and standard deviation of the highest temperature rise in the center line of the fire source are analyzed. Probability density (PDF), cumulative probability (CDF) et al. The logarithmic normal distribution of the highest temperature rising clothes of the central line of the fire source, the logarithmic mean 5.8697 and the logarithmic standard deviation of 0.31396 are obtained. The probability density function of the highest temperature rise of the central line of the fire source is obtained by fitting. The probability distribution of maximum temperature rise of flue gas at different distances from the central line of fire source is studied by sampling analysis. The maximum temperature rise probability density function is obtained by fitting the logarithmic normal distribution of maximum temperature rise. The application of probability distribution of flue gas temperature rise in building fire safety evaluation is illustrated by case analysis. According to the critical temperature criterion, the failure probability of steel structure members in large space is analyzed, and the failure probability of steel structure members in the case is obtained. In order to conveniently calculate and analyze the probability distribution of flue gas temperature rise in buildings with different area, height and fire load, a program of "smoke temperature rise and structural failure analysis based on the randomness of fire" was developed.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU998.1;TU834
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆懷林;黃迪;張國維;朱國慶;;火災(zāi)不確定性因素下的人員疏散時(shí)間模型[J];消防科學(xué)與技術(shù);2016年12期
2 李俊毅;朱國慶;;基于正交試驗(yàn)法的大空間自然排煙影響因素分析[J];消防科學(xué)與技術(shù);2015年07期
3 高云驥;朱國慶;;火羽流軸向溫度大渦模擬與實(shí)驗(yàn)比較[J];消防科學(xué)與技術(shù);2014年08期
4 高勛;朱國慶;;基于煙氣特性的商業(yè)綜合體防排煙研究[J];消防科學(xué)與技術(shù);2014年06期
5 宋波;趙力增;白殿濤;智會(huì)強(qiáng);王海娟;王健強(qiáng);田立偉;羅宗軍;張君娜;劉欣;;普通轎車燃燒特性的試驗(yàn)研究[J];中國安全科學(xué)學(xué)報(bào);2013年07期
6 薛素鐸;梁勁;李雄彥;;大空間建筑火災(zāi)空氣升溫經(jīng)驗(yàn)公式[J];北京工業(yè)大學(xué)學(xué)報(bào);2013年02期
7 張國維;朱國慶;吳維華;黃麗麗;;高大空間池火羽流中心線軸向溫度試驗(yàn)研究[J];消防科學(xué)與技術(shù);2012年09期
8 黎夏舒;;某博物館典禮大廳煙氣控制系統(tǒng)設(shè)計(jì)[J];消防科學(xué)與技術(shù);2012年05期
9 季經(jīng)緯;郝耀華;王玉娥;李金鴿;;蒙特卡洛方法計(jì)算兩區(qū)域火災(zāi)中的熱輻射[J];中國礦業(yè)大學(xué)學(xué)報(bào);2011年02期
10 孔得朋;陸守香;馮磊;盧兆明;;熱釋放速率的不確定性對(duì)可用安全疏散時(shí)間的影響[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);2010年07期
相關(guān)博士學(xué)位論文 前3條
1 張國維;高大空間鋼結(jié)構(gòu)建筑火災(zāi)全過程性能化防火設(shè)計(jì)方法研究[D];中國礦業(yè)大學(xué);2015年
2 孔得朋;火災(zāi)安全設(shè)計(jì)中參數(shù)不確定性分析及耦合風(fēng)險(xiǎn)的設(shè)計(jì)方法研究[D];中國科學(xué)技術(shù)大學(xué);2013年
3 褚冠全;基于火災(zāi)動(dòng)力學(xué)與統(tǒng)計(jì)理論耦合的風(fēng)險(xiǎn)評(píng)估方法研究[D];中國科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 方磊;基于LHS抽樣的不確定性分析方法在概率安全評(píng)價(jià)中的應(yīng)用研究[D];中國科學(xué)技術(shù)大學(xué);2015年
2 李利敏;辦公建筑室內(nèi)可燃物燃燒特性實(shí)驗(yàn)及火災(zāi)危險(xiǎn)性分析[D];中國礦業(yè)大學(xué);2014年
3 劉陽;基于FDS的建筑火災(zāi)數(shù)值模擬及安全疏散研究[D];遼寧工程技術(shù)大學(xué);2012年
4 吳小華;基于區(qū)域模擬的室內(nèi)火災(zāi)升溫曲線研究[D];中南大學(xué);2011年
5 靳飛;火災(zāi)下建筑室內(nèi)空氣升溫的隨機(jī)性研究[D];同濟(jì)大學(xué);2007年
,本文編號(hào):2265479
本文鏈接:http://www.wukwdryxk.cn/jianzhugongchenglunwen/2265479.html