基于液相沉積技術(shù)制備的金屬氧化物膜及其可見光電催化性能研究
本文選題:液相沉積 + 可見光 ; 參考:《華中科技大學(xué)》2015年博士論文
【摘要】:光電催化技術(shù)是處理環(huán)境中有機(jī)污染物的重要的高級氧化技術(shù)之一,其中,光陽極材料的性能是影響光電催化系統(tǒng)效率的一個關(guān)鍵因素。在制備光陽極膜的方法中,液相沉積法具有制備過程簡單、成本低、基體適用范圍廣等優(yōu)點(diǎn)。本論文研究利用液相沉積法分別制備了ZnO薄膜、Ag/ZnO復(fù)合薄膜、α-Fe2O3薄膜和WO3/TiO2薄膜,通過X-射線衍射(XRD)、掃描電鏡(SEM)、X射線能譜(EDX)、X-射線光電子能譜(XPS)和紫外-可見漫反射(UV-Vis DRS)等多種手段對薄膜的材料學(xué)和光學(xué)性能進(jìn)行了表征分析,并將這些薄膜電極用于可見光光照下光電催化降解有機(jī)污染物。論文的主要研究內(nèi)容如下:(1)發(fā)展了一種新型的以ZnO-HF和H3BO3為前驅(qū)體的的液相沉積法制備ZnO薄膜,并通過羅丹明B(RhB)和對硝基酚(PNP)的降解研究了膜電極在可見光照射下的光電催化性能。結(jié)果表明,ZnO薄膜為表面不規(guī)則的納米棒狀,在可見光區(qū)域有一定的吸收。通過調(diào)節(jié)前驅(qū)液中ZnO和H3B03的比例可以改變ZnO膜電極的可見光電催化性能,當(dāng)ZnO和H3B03的摩爾比為1:2時,薄膜的光電催化活性最高,在240 min內(nèi)可以降解43.3%的RhB,在210 min內(nèi)可將75.1%的PNP降解。(2)采用液相沉積法結(jié)合紫外光還原法制備了負(fù)載納米Ag的ZnO薄膜電極。SEM[和XPS分析表明納米Ag顆粒分布在ZnO納米棒上,且沉積量隨著光還原時間的加長而增加。相比純的ZnO電極,Ag/ZnO復(fù)合薄膜的光電催化效率均有所提高。其中,在紫外光照射3min后得到的復(fù)合膜電極光電催化活性最高,在可見光照射并外加0.8 V偏壓時,在240 min內(nèi)對RhB的降解率可達(dá)到61.3%,比單純ZnO薄膜的降解率高了18%。膜電極的光電催化活性的提高主要是由于Ag的負(fù)載可以提高ZnO薄膜對可見光的利用率,同時Ag與ZnO之間的肖特基勢壘有助于光生電子-空穴對的分離。(3)以FeOOH-NH4FHF和H3B03為前驅(qū)體,通過液相沉積過程制備了α-Fe2O3薄膜,并研究了該膜電極在可見光照射下的光電催化性能。結(jié)果表明,經(jīng)600℃焙燒后的α-Fe2O3薄膜表面為多孔狀結(jié)構(gòu),禁帶寬度大約為2.0 eV,相比其它溫度下焙燒后的膜電極此薄膜光電催化活性最高。在此電極上,經(jīng)光電催化反應(yīng)后,甲基橙(MO)在120min內(nèi)的降解率達(dá)到79.1%,對硝基酚(PNP)在240min內(nèi)的降解率為46.8%。此LPD α-Fe2O3薄膜具有良好的可見光電催化性能和穩(wěn)定性。(4)采用兩步液相沉積法制備了WO3/TiO2薄膜電極。SEM的分析和FTO上不同膜沉積量的測定表明底層的TiO2由納米顆粒組成,上層的WO3呈現(xiàn)由納米片交叉聚集形成的花狀結(jié)構(gòu),而且TiO2薄膜為WO3的沉積提供了一個良好的基底。同時,WO3明顯增加了TiO2對可見光的吸收,提高了TiO2薄膜的可見光電催化活性。當(dāng)WO3前驅(qū)液中H3BO3濃度為0.2 mmol·L-1時,得到的WO3/TiO2薄膜具有最好的光電催化性能,在可見光照射下,同時施加1.0 V的陽極偏壓,對RhB的降解率在240min內(nèi)可以達(dá)到50.9%,對4-氯苯酚(4-CP)的降解率在90 min內(nèi)能夠達(dá)到大約80%。此液相沉積W03/TiO2薄膜具有高效的光電催化活性和穩(wěn)定性,適于降解多種難降解有機(jī)污染物。
[Abstract]:Photoelectrochemical technology is one of the most important advanced oxidation technologies for the treatment of organic pollutants in the environment. The performance of the photoanode material is a key factor affecting the efficiency of the photoelectric catalytic system. In the preparation of the photoanode film, the liquid phase deposition has the advantages of simple preparation process, low cost and wide application range. The material and optical properties of ZnO film, Ag/ZnO composite film, alpha -Fe2O3 film and WO3/TiO2 film were prepared by liquid phase deposition, respectively by X- ray diffraction (XRD), scanning electron microscopy (SEM), X ray energy spectrum (EDX), X- ray photoelectron spectroscopy (XPS) and UV visible diffuse reflectance (UV-Vis). The main research contents of this paper are as follows: (1) a new type of liquid phase deposition method with ZnO-HF and H3BO3 as precursors was developed to prepare ZnO thin films, and the film electrode was studied by the degradation of Luo Danming B (RhB) and p-nitrophenol (PNP). The results show that the ZnO film is an irregular nanoscale rod with a certain absorption in the visible light region. The visible Photoelectrochemical Performance of the ZnO film electrode can be changed by adjusting the ratio of ZnO and H3B03 in the precursor. When the molar ratio of ZnO and H3B03 is 1:2, the photocatalytic activity of the film is the highest, at 2 In 40 min, 43.3% of RhB can be degraded and 75.1% PNP can be degraded in 210 min. (2).SEM[and XPS of ZnO thin film electrodes loaded with nano Ag are prepared by liquid deposition and UV reduction method. The distribution of nano Ag particles on ZnO nanorods, and the amount of deposition increases with the lengthening of the light return time. The photoelectric catalytic efficiency of the nO composite film is improved. The photoelectrochemical activity of the composite membrane electrode obtained by UV irradiation for 3min is the highest. The degradation rate of RhB can reach 61.3% in 240 min when visible light is irradiated with 0.8 V, and the photocatalytic activity of 18%. film electrode is higher than that of pure ZnO film. The main reason is that the Ag load can improve the utilization of visible light in the ZnO film, and the Schottky barrier between Ag and ZnO helps to separate the photoelectron hole pair. (3) the precursor of FeOOH-NH4FHF and H3B03 is used as the precursor to prepare the alpha -Fe2O3 film through the liquid phase deposition process, and the photoelectrochemical catalysis of the membrane electrode under visible light is studied. The results show that the surface of the alpha -Fe2O3 film after calcination at 600 C is a porous structure, and the band gap is about 2 eV, and the photo catalytic activity of this film is the highest compared with that of the film electrode prepared at other temperatures. On this electrode, the degradation rate of methyl orange (MO) in 120min is 79.1%, and p-nitrophenol (PNP) in 240mi at this electrode. The degradation rate within n is 46.8%., the LPD alpha -Fe2O3 film has good visible photo catalytic performance and stability. (4) the analysis of WO3/TiO2 thin film electrode.SEM and the determination of the deposition of different films on FTO show that the TiO2 of the bottom is composed of nanoparticles and the WO3 in the upper layer is formed by the cross aggregation of nanoscale. The flower structure and the TiO2 film provide a good substrate for the deposition of WO3. At the same time, WO3 obviously increases the absorption of visible light by TiO2 and improves the visible photo catalytic activity of the TiO2 film. When the H3BO3 concentration is 0.2 mmol. L-1 in the WO3 precursor, the obtained WO3/TiO2 films have the best Photoelectrochemical Performance, and the visible light irradiation is shown in the visible light. At the same time, the anodic bias of 1 V was applied, the degradation rate of RhB could reach 50.9% in 240Min, and the degradation rate of 4- chlorophenol (4-CP) in 90 min could reach about 80%.. The photocatalytic activity and stability of the liquid phase deposited W03/TiO2 film were high, and it was suitable for the degradation of many kinds of refractory organic pollutants.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB383.2;X505
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 秦穎,樂英紅,高滋;化學(xué)液相沉積與沸石疏水性[J];高等學(xué);瘜W(xué)學(xué)報;1998年09期
2 劉劍;董秀珍;郝斌;李悅;;Piranha改性玻璃基板液相沉積制備SrTiO_3功能陶瓷薄膜(英文)[J];無機(jī)化學(xué)學(xué)報;2012年05期
3 鄒光龍;;氨基乙酸輔助化學(xué)液相沉積制備三維花狀的氫氧化鎂[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2008年04期
4 王汝娜;李群艷;王志宏;韋奇;聶祚仁;;溶液pH對液相沉積氫氧化鎳薄膜的影響[J];無機(jī)材料學(xué)報;2007年05期
5 羅飛;王錦鵬;陶春虎;李志;劉大博;;化學(xué)液相沉積制備PbSe薄膜生長過程及其性能研究[J];航空材料學(xué)報;2011年02期
6 鄒光龍;陳衛(wèi)祥;劉潤;徐鑄德;;氨基乙酸輔助化學(xué)液相沉積制備花狀氫氧化鎂[J];中國科技論文在線;2008年09期
7 蒯勤;葉紅齊;高瑩;;液相沉積制備TiO_2/Al顏料及其在自清潔涂料中的應(yīng)用[J];粉末冶金材料科學(xué)與工程;2010年03期
8 ;[J];;年期
相關(guān)會議論文 前1條
1 王勇;高家誠;張春艷;張亞平;;鈦合金表面液相沉積磷酸鈣涂層的組織結(jié)構(gòu)[A];第九屆全國生物材料學(xué)術(shù)會議(CBMS-9)論文集[C];2002年
相關(guān)博士學(xué)位論文 前1條
1 張曼;基于液相沉積技術(shù)制備的金屬氧化物膜及其可見光電催化性能研究[D];華中科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 雷慧麗;表面接枝沒食子酸和己二胺為模板調(diào)控二氧化鈦薄膜的液相沉積[D];西南交通大學(xué);2015年
2 李永祥;化學(xué)液相沉積Al_2O_3薄膜鈍化p型黑硅的研究[D];大連理工大學(xué);2013年
,本文編號:1838389
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/1838389.html