a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當前位置:主頁 > 科技論文 > 材料論文 >

錳系尖晶石金屬氧化物的水熱制備與電化學性能研究

發(fā)布時間:2018-08-02 18:49
【摘要】:鋰離子電池作為綠色二次電池已經廣泛的應用到了人們的日常生活中。目前已商業(yè)化生產的石墨負極由于其理論比容量(372 mAh/g)較低,已不能滿足其在儲能領域中的應用。具有高理論比容量(600-1000 m Ah/g)的過渡金屬氧化物尤其是錳系尖晶石金屬氧化物,其結構穩(wěn)定、來源廣泛、成本低廉、且對環(huán)境友好而成為鋰離子電池負極材料的研究熱點。但其在充放電過程中容易發(fā)生體積變化導致電極材料結構的崩塌且導電性較差,限制了其應用。本文通過將錳系尖晶石型過渡金屬氧化物負載在石墨烯片層上緩解金屬氧化物體積變化應力的同時提高其導電性。本文的主要研究內容如下:采用改進的Hummers法制備氧化石墨烯。以CoCl2·6H2O和MnCl2·4H2O為金屬源,水為溶劑,氨水為沉淀劑,采用成本低廉的原材料以及簡單溫和的一步水熱法合成尖晶石(Co,Mn)(Co,Mn)2O4/RGO納米復合材料。與單純的金屬氧化物相比,此納米復合材料具有更均勻的顆粒形貌以及更優(yōu)異的電化學性能。通過控制水熱反應時間來研究其對納米復合材料的形貌結構以及電化學性能的影響。水熱反應時間為8 h的尖晶石(Co,Mn)(Co,Mn)2O4/RGO納米復合物具有最合適的粒徑以及最優(yōu)異的電化學性能。顆粒粒徑在50 nm左右,首次放電容量為1486.9 mAh/g,首次庫倫效率為73.7%,50次充放電循環(huán)后容量為743 mAh/g。以Zn(Ac)2·4H2O和Mn(Ac)2·4H2O為金屬源,采用簡單的一步水熱法合成尖晶石ZnMn2O4/RGO納米復合材料。與單純的ZnMn2O4納米顆粒相比,ZnMn2O4/RGO納米復合材料具有更均勻的顆粒形貌以及更優(yōu)異的電化學性能。通過控制水熱反應時間來研究其對納米復合材料的形貌結構以及電化學性能的影響。水熱反應時間為10 h的得到的ZnMn2O4/RGO納米復合材料綜合性能最佳。其中金屬氧化物顆粒尺寸均勻,顆粒粒徑約為30 nm,在100 mA/g的電流密度下,首次放電容量為1279.7 mAh/g,循環(huán)50圈后比容量為796.9 mAh/g,相比于第二次放電比容量,容量保持率高達96.07%。本文通過簡單的一步水熱法,不需要高溫燒結就能實現(xiàn)高結晶度的尖晶石納米金屬氧化物附著在還原的氧化石墨烯片層上。通過控制金屬元素的種類可以控制顆粒的尺寸、充放電平臺,為獲得成本低、制備工藝簡單且高比容量的鋰離子電池負極材料提供了新的思路。
[Abstract]:As a green secondary battery, lithium ion battery has been widely used in people's daily life. Because of its low theoretical specific capacity (372 mAh/g), the graphite anode produced commercially can not satisfy its application in the field of energy storage. Transition metal oxides with high theoretical specific capacity (600-1000m Ah/g), especially manganese spinel metal oxides, are of stable structure, wide source, low cost and friendly to the environment. However, it is easy to change the volume during charge and discharge, which leads to the collapse of electrode structure and poor electrical conductivity, which limits its application. In this paper, manganese spinel type transition metal oxides were loaded on graphene lamellae to relieve the stress of metal oxide volume change and to improve its electrical conductivity. The main contents of this paper are as follows: the improved Hummers method is used to prepare graphene oxide. Using CoCl2 6H2O and MnCl2 4H2O as metal source, water as solvent and ammonia as precipitant, spinel (Coomn) 2O4/RGO nanocomposites were synthesized by simple and mild one step hydrothermal method with low cost raw materials. Compared with the pure metal oxides, the nanocomposites have more uniform particle morphology and better electrochemical properties. The effects of hydrothermal reaction time on the morphology and electrochemical properties of nanocomposites were studied. The 2O4/RGO nanocomposites with hydrothermal reaction time of 8 h have the most suitable particle size and excellent electrochemical performance. The particle size is about 50 nm, the first discharge capacity is 1486.9 mAh/ g, the first Coulomb efficiency is 73.7% and the capacity is 743 mAh/ g after 50 charge-discharge cycles. Spinel ZnMn2O4/RGO nanocomposites were synthesized by a simple hydrothermal method using Zn (Ac) 2 4H2O and Mn (Ac) 2 4H2O as metal sources. Compared with the pure ZnMn2O4 nanoparticles, the ZnMn2O4 / RGO nanocomposites have more uniform particle morphology and better electrochemical properties. The effects of hydrothermal reaction time on the morphology and electrochemical properties of nanocomposites were studied. The ZnMn2O4/RGO nanocomposites with hydrothermal reaction time of 10 h have the best comprehensive properties. The particle size of metal oxide is about 30 nm, the initial discharge capacity is 1279.7 mg / g at current density of 100 mA/g, and the specific capacity is 796.9 mg / g after 50 cycles. Compared with the second discharge specific capacity, the capacity retention rate is up to 96.07. In this paper, a simple one step hydrothermal method is used to achieve high crystallinity spinel nanometallic oxides attached to the reduced graphene oxide lamellae without the need of high temperature sintering. By controlling the kinds of metal elements, the particle size and charge / discharge platform can be controlled, which provides a new idea for the preparation of lithium ion battery anode materials with low cost, simple process and high specific capacity.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB383.1;TM912

【相似文獻】

相關期刊論文 前10條

1 施慶和;氧化物[J];化學世界;1959年10期

2 R.M.Lum.L.Seibles ,R.P.Jones ,余耀華;添加金屬氧化物對已增塑聚氯乙烯的預燃高溫裂解化學的效應[J];聚氯乙烯;1982年03期

3 大河內春乃;白木;;化學試劑基礎知識講座 八、金屬和金屬氧化物[J];化學試劑;1985年02期

4 王岳 ,余楚蓉;金屬氧化物的制造方法[J];有色冶煉;1989年05期

5 吳水清;;不合格金屬氧化物的退除方法[J];表面技術;1990年05期

6 劉先曙;密封的金屬氧化物-儲氫電池的生產工藝[J];兵器材料科學與工程;1991年11期

7 C.P.J.VANVUUREN;J.J.BODENSTEIN;M.SCIARONE;P.KESTENS;孫繼光;;人工合成鉻鐵礦在不同金屬氧化物下的熱分析研究[J];鐵合金;1993年04期

8 ;一步生產金屬氧化物等微細粉體的新設備[J];現(xiàn)代化工;1999年09期

9 陸軍;;甲烷與金屬氧化物反應的探討[J];化學教育;1993年03期

10 張艷輝,田彥文,邵忠財;多形態(tài)金屬氧化物晶體的制備[J];材料與冶金學報;2005年03期

相關會議論文 前10條

1 馬臻;任瑜;盧巖斌;Peter G.Bruce;;介孔過渡金屬氧化物催化脫除環(huán)境污染物[A];第六屆全國環(huán)境化學大會暨環(huán)境科學儀器與分析儀器展覽會摘要集[C];2011年

2 櫖恅i,

本文編號:2160376


資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2160376.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶1da9b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
乱人伦人妻中文字幕不卡| 国产亚洲无线码一区二区| 建始县| 色婷婷基地| 精品综合久久久久久97超人| 欧美丰满熟妇BBBBBB| 久久久久成人精品无码中文字幕| 国产一区二区三区久久久| 尖峰时刻| 中文字幕在线亚洲二区| 久久精品女人的天堂av| aa级女人大片喷水视频免费| 999国产精品亚洲77777| 丰满大屁股bbbbbb喷水| 色妞视频| 农村欧美丰满熟妇XXXX| 99国产精品久久99久久久| 麻豆人人妻人人妻人人片AV | 久久看片| 中文乱码字慕人妻熟女人妻| 亚洲色大成永久ww网站| 特黄做受又大又粗又长大片| 日日躁夜夜躁狠狠躁| 精品国产欧美一区二区| 真实国产精品视频400部| 国产一区二区三区av探花88| 人人射人人| 丰满大屁股bbbbbb喷水| 国产一区二区内射最近更新| 色播五月| 久久tv| 精品不卡| 久久精品国产亚洲AV麻豆蜜芽| 夂久精品国产久精国产| 国产成人无码精品久久久露脸| 国产女人喷潮视频在线观看| 免费A级毛片无码A∨免费软件 | 东京不太热| 少妇人妻精品久久久久久| 我与美艳mm的激情| 大香蕉欧美|