二氧化鈦納米帶負(fù)載Au-Ag納米催化劑的制備及其性能研究
[Abstract]:CO is one of the main pollutants in the atmosphere. The presence of CO in the air is very harmful to the environment and human health. In other industrial production, such as the use of fuel cells, CO will cause Pt electrode poisoning. The oxidation reaction of.CO, which affects the use efficiency, is an effective way to remove CO, and the oxidation of CO, especially the low temperature strip, is an effective way. The oxidation reaction under the component is of high practical value. It can be applied to indoor gas purification, gas mask, CO gas sensor and so on. And because the reaction of CO can be used as a probe reaction to explore the mechanism of catalytic reaction, the catalytic oxidation reaction of CO at low temperature has very important practical value and theoretical significance.A. U based nano catalysts are one of the most widely used catalysts in the catalytic oxidation of CO. The synergistic effect of bimetallic catalysts because of the addition of second metals makes it higher than the activity and stability of the single metal catalysts. Therefore, the synthesis and application of bimetallic catalysts have become one of the hotspots in the field of catalytic research. One dimension TiO2 The nanometers are synthesized by a simple hydrothermal method. There is no use of other macromolecular surfactants in the synthesis process. It has the characteristics of clean surface and smooth surface and uniform distribution of defects. It is an ideal catalyst carrier. And because of the one-dimensional fiber structure of TiO2 nanometers, it can be assembled into a whole porous structure nanoscale catalyst. In addition, the method of light deposition is a common method for the preparation of supported catalyst because of its simple operation, low cost and green non pollution. In this paper, Au and Au-Ag nanoparticles were loaded on the surface of TiO2 nanomaterials of one dimension nanomaterial, respectively, and the Au/TiO2-NB and Au-Ag/Ti were prepared by the method of light deposition and two step continuous photo deposition. O2-NB nanostructures were assembled into a holistic porous structure nanoscale catalyst for CO catalytic oxidation at low temperature. The specific contents of the study are as follows: 1. a double metal Au-Ag/TiO2-NB nano catalyst loaded with TiO2 nanoribbons was prepared by continuous two step photodeposition and assembled into a holistic porous nanoscale structure. SEM, TEM, The morphology, composition and structure of the nanoparticles are characterized by XRD, ICP. UV-Vis optical absorption and XPS, respectively. From the SEM image, it can be seen that the nanoscale paper presents a three dimensional cross penetration structure with a larger porosity and specific surface area. As can be seen from the TEM diagram, the metal nanoparticles are evenly distributed on the surface of the TiO2 nanoscale and its particles. The diameter is Shuangfeng distribution. The small particle size is about 2 nm., according to UV-Vis light absorption and XPS analysis, the metal particles in the bimetal Au-Ag/TiO2-NB nanostructures are the alloy structure of the surface enriched with silver oxide. The prepared bimetallic Au-Ag/TiO2-NB nanoscale catalyst should be used for the low temperature catalytic oxidation reaction of CO, respectively. The effect of pH value of precursor solution, pretreatment conditions and preparation methods on the activity of the catalyst during the preparation process showed that when the pH value of the precursor solution was 10, the activity of the single metal Au/TiO2-NB nano catalyst was the highest, which was due to the smaller Au particles prepared under this condition, and the Cl- residue was higher because of the high degree of hydrolysis of the AuCl4- ions. The catalyst has a higher catalytic activity. Secondly, the catalyst prepared by the two step photodeposition method, which deposited the Au before deposition of Ag, avoids the formation of AgCl in the preparation of Au and in situ replacement after the deposition of Ag first and has higher catalytic activity. Therefore, the effect of Au/Ag ratio and preconditioning conditions on catalytic activity was systematically investigated. When the proportion of Au/Ag was 1:0.8, the activity was highest after reduction of 400 degrees C. Due to the deactivation of Au based nano catalyst in the catalytic oxidation of CO at low temperature, the bimetallic Au-Ag/TiO was discussed by the method of inactivation rebirth reaction. The cause of 2-NB nano catalyst deactivation is that the activity of.3.Au nano catalyst is affected by the particle size and spatial distribution. When the small particle size distribution is small, the agglomeration phenomenon is easy to occur, which leads to the deactivation of the catalyst. Therefore, the preparation of nano catalyst with small particle size and uniform spatial distribution is very high. In this paper, the Au based nanoscale catalyst with controllable particle size and space distribution and high sintering resistance is prepared by systematic regulation of the light deposition time and precursor concentration in the process of photomivating. The current drive body is 1 mL 0.025 mol. L-1 HAuCl4 solution under 400 W xenon lamp, 10 s, and the particle size of catalyst nanoparticles For 2.5 nm, the CO can be completely converted under the reaction condition. The size of Au nanoparticles is only 1.4 nm when the current volume of the flooding solution is reduced to 0.1 mL. Although the load is low (0.056 wt.%), the catalytic oxidation reaction of CO still has good catalytic activity.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O643.36;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張鶯;;納米催化劑的制備和最新應(yīng)用研究進(jìn)展[J];山西大同大學(xué)學(xué)報(自然科學(xué)版);2008年04期
2 高昂;;納米催化劑顆粒的熱力學(xué)分析[J];才智;2010年19期
3 ;廈門大學(xué)研制成功甲醇燃料電池納米催化劑[J];精細(xì)化工原料及中間體;2010年04期
4 高紅,趙勇;納米材料及納米催化劑的制備[J];天津化工;2003年05期
5 呂玉光;如何用現(xiàn)代儀器表征納米催化劑[J];現(xiàn)代儀器;2005年03期
6 李敏;崔\~;;納米催化劑研究進(jìn)展[J];材料導(dǎo)報;2006年S1期
7 ;稀土納米催化劑將用于節(jié)能減排[J];無機鹽工業(yè);2008年03期
8 張忠模;;稀土納米催化劑將實現(xiàn)產(chǎn)業(yè)化[J];功能材料信息;2008年02期
9 耀星;;稀土納米催化劑應(yīng)用通過鑒定[J];粉末冶金工業(yè);2008年05期
10 郭祖鵬;郭莉;師存杰;焉海波;;磁性納米催化劑的研究進(jìn)展[J];精細(xì)化工中間體;2011年04期
相關(guān)會議論文 前10條
1 姜艷霞;張斌偉;廖洪剛;陳明暉;孫世剛;;金和鉑納米催化劑的控制合成及其電催化性能[A];第十二屆固態(tài)化學(xué)與無機合成學(xué)術(shù)會議論文摘要集[C];2012年
2 明軍;趙鳳玉;;超臨界二氧化碳中納米催化劑的形成過程及機理研究[A];第九屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2012年
3 陳蓉;韓杰;郭榮;;金/導(dǎo)電高分子蛋黃/蛋殼結(jié)構(gòu)納米催化劑的合成及催化性能研究[A];中國化學(xué)會第十四屆膠體與界面化學(xué)會議論文摘要集-第1分會:表面界面與納米結(jié)構(gòu)材料[C];2013年
4 魯宋;王明貴;韓杰;郭榮;;磁性聚苯胺負(fù)載納米催化劑的合成及性能研究[A];中國化學(xué)會第十四屆膠體與界面化學(xué)會議論文摘要集-第1分會:表面界面與納米結(jié)構(gòu)材料[C];2013年
5 張成明;崔新江;鄧友全;石峰;;氯離子調(diào)控的高性能納米催化劑可控制備研究[A];第十四屆全國青年催化學(xué)術(shù)會議會議論文集[C];2013年
6 王杰;王帥;萬穎;;限域納米催化劑熱穩(wěn)定性的研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第34分會:納米催化[C];2014年
7 周小春;Peng Chen;;單分子檢測技術(shù)在納米催化劑的大規(guī)模并行篩選中的應(yīng)用研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第32分會:納米表征與檢測技術(shù)[C];2014年
8 陸安慧;;炭基納米催化劑的設(shè)計合成[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第34分會:納米催化[C];2014年
9 曹建亮;袁忠勇;;用于催化一氧化碳低溫氧化的氧化銅基多孔納米催化劑體系[A];第六屆全國環(huán)境催化與環(huán)境材料學(xué)術(shù)會議論文集[C];2009年
10 胡守天;趙惠忠;李平和;李成香;汪厚植;;Ce-O-Co/ZrO_2納米催化劑的結(jié)構(gòu)及催化氧化CH_4性能的研究[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第三屆納米材料和技術(shù)應(yīng)用會議論文集(上卷)[C];2003年
相關(guān)重要報紙文章 前7條
1 江戰(zhàn);新型納米催化劑研制成功[N];中國有色金屬報;2002年
2 閆明星 王群 記者 姜雪松;納米催化劑“水中取氫”[N];哈爾濱日報;2010年
3 林世雄邋本報記者 通訊員 李靜;納米催化劑合成的重大突破者[N];福建日報;2008年
4 叢林;纖維素水解技術(shù)取得新進(jìn)展[N];中國化工報;2011年
5 記者 劉霞;新納米催化劑能在可見光下快速分解水[N];科技日報;2013年
6 鐘科;中科院三元催化轉(zhuǎn)換器系統(tǒng)技術(shù)通過鑒定[N];中國有色金屬報;2006年
7 特約記者 呼躍軍;清華大學(xué)與包頭聯(lián)合研發(fā)稀土材料[N];中國化工報;2005年
相關(guān)博士學(xué)位論文 前10條
1 張東慧;金屬—鐵酸鹽復(fù)合磁性納米催化劑的制備及催化性能研究[D];吉林大學(xué);2010年
2 劉鴻飛;磁性納米催化劑的合成及其催化性能研究[D];北京化工大學(xué);2013年
3 徐貽成;具有溫控相分離功能的銠納米催化劑及其應(yīng)用[D];大連理工大學(xué);2013年
4 滕飛;納米催化劑的微乳法制備及其表征[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2005年
5 唐林;負(fù)載型的金屬納米催化劑在醇參與的氧化反應(yīng)中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2015年
6 陳日志;納米催化無機膜集成技術(shù)的研究與應(yīng)用[D];南京工業(yè)大學(xué);2004年
7 曾艷;以含聚醚鏈季銨鹽型離子液體為穩(wěn)定劑的過渡金屬納米催化劑制備及應(yīng)用[D];大連理工大學(xué);2012年
8 田丹碧;負(fù)載型納米催化劑KF/Al_2O_3的制備及其應(yīng)用研究[D];南京工業(yè)大學(xué);2004年
9 王曄;天然DNA負(fù)載的金屬納米催化劑:制備,,表征及其催化性能研究[D];中國科學(xué)技術(shù)大學(xué);2011年
10 解雅玲;基于C(Ni)納米催化劑的設(shè)計合成及其催化加氫性能[D];大連理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 邱凱;二氧化鈦納米帶負(fù)載Au-Ag納米催化劑的制備及其性能研究[D];山東大學(xué);2015年
2 吳靜謐;CO低溫氧化高效Pd納米催化劑的制備與其性能研究[D];浙江大學(xué);2015年
3 劉佳;含聚醚鏈季銨鹽型離子液體穩(wěn)定的銠及鈀/銠雙金屬納米催化劑的制備及應(yīng)用[D];大連理工大學(xué);2011年
4 王軍;新型化學(xué)貯氫材料分解制氫納米催化劑的合成及性能研究[D];江南大學(xué);2012年
5 潘洪;新型納米催化劑的制備及其催化的酯和磷酸酯的水解反應(yīng)[D];天津大學(xué);2009年
6 王建新;納米催化劑的制備和使用性能研究[D];吉林大學(xué);2012年
7 王珊珊;催化還原脫硫用納米催化劑的制備方法及其特性研究[D];華中科技大學(xué);2009年
8 孫芳;銀納米催化劑的制備及其電催化性能研究[D];北京化工大學(xué);2014年
9 許茜;新型低維納米催化劑的高分辨電子顯微表征[D];南京大學(xué);2015年
10 朱曉航;磁性核殼納米催化劑的制備及其在有機反應(yīng)中的應(yīng)用[D];蘭州大學(xué);2014年
本文編號:2168003
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2168003.html