聲子晶體缺陷態(tài)的溫度控制及蘭姆波禁帶的低頻調(diào)節(jié)
[Abstract]:Because of its rich physical connotation and broad potential application prospects, the research work of phononic crystals has attracted more and more attention of scholars both at home and abroad in the past twenty years. Phononic crystals are periodic composite materials or structures with sonic / elastic band gap characteristics. The basic characteristics of phononic crystals are mainly two: one is When there is a defect state characteristic, when there is a defect in the periodic composite structure, the acoustic / elastic wave within the frequency range of the defect state will be localized at the point defect or along the defect; two is a phonon band gap, which makes the sound wave / elastic wave suppressed in the band gap frequency range, and the sound / elasticity in the other frequency range (through the band range). The wave can be transmitted without loss under the effect of the dispersion relation. The phononic crystal is a new type of artificial periodic structural functional material, which can regulate the frequency of sound waves by human design and control the propagation of sound waves. Therefore, there are many potential applications in real life, for example, for the design of acoustic filters or acoustic waveguides, it can also be used in the design of sound waves. The theoretical research and improvement of phononic crystals are of great value in the field of vibration and noise control. This paper first introduces the related concepts of phononic crystals, expounds the research significance of phononic crystals, and discusses the research status of phononic crystals at home and abroad and some correlation of phononic crystals. Secondly, various methods for calculating the band gap of phononic crystals, their characteristics and the common arrangement of two-dimensional phononic crystals are introduced. The finite element method is introduced emphatically from the Bloch theorem and the basic principles of elastic mechanics, and the basic steps of the numerical simulation of the finite element method are introduced with examples. Then, the temperature pair is introduced in detail. We have proposed two novel models: the first model is obtained by changing the temperature of the central column, and the second model is obtained by changing the central column temperature and rotating the central square column at the 45 degree angle. We get some very important conclusions: for the model one, when the sound is sound When the temperature of the crystal is greater than the Curie temperature, and the defect column temperature is less than Curie temperature, the defect state will appear in the broadband gap, and the lower the temperature of the center defect column, the lower the frequency of the defect mode. For model two, the defect mode will appear in the wide band gap and the number and frequency of the defect mode as long as the phonon crystal temperature is larger than the defect temperature. However, when the temperature of the phononic crystal is lower than the Curie temperature, even if the rotation of the central defect column has broken the original geometric symmetry of the structure, there will still be no vacancy in the wide band gap. We also consider and calculate the central defect column. The results show that the temperature gradient produced by the heat flow around the center of the center is very small and can almost be ignored. Finally, the numerical value of the propagation characteristics of Lamb wave in a two-dimensional phononic plate, which is placed on both sides of the composite plate with a square lattice with a square lattice, is described in detail. Our calculation results show that the relative bandwidth of the two structures is two orders of magnitude higher than that of the two dimensional two component local resonant phononic crystal plate, which is two orders of magnitude higher than that of the two-dimensional three component composite plate rod structure and the three component simple plate composite rod structure. We find that the widening of the relative bandwidth is caused by the coupling between the plate mode and the "double vibrator spring" mode. It effectively enhances the local resonance mechanism. We calculate the elastic wave displacement field well to illustrate the physical mechanism of the low frequency band gap open zone. We also find that the band gap peace belt is very obvious. The innovation of this paper is to propose a novel point defect model and a local resonant phononic crystal plate model. In the field of research, the defect state can be easily obtained without changing the lattice arrangement, the shape of the scatterer, the filling rate, the component material and so on. It is often meaningful. On the premise of not changing the composition of the phononic crystal plate structure, the band gap with larger relative bandwidth is obtained by constructing a new plate model.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 溫激鴻,劉耀宗,郁殿龍,王剛,趙宏剛;基于散射單元的聲子晶體振動帶隙研究[J];人工晶體學(xué)報(bào);2004年03期
2 溫激鴻,劉耀宗,王剛,趙宏剛;聲子晶體彈性波帶隙理論計(jì)算及實(shí)驗(yàn)研究[J];功能材料;2004年05期
3 郁殿龍,劉耀宗,邱靜,王剛,溫激鴻,趙宏剛;一維聲子晶體振動特性與仿真[J];振動與沖擊;2005年02期
4 趙宏剛,劉耀宗,溫激鴻,韓小云;心材密度及彈性模量對二維局域共振型聲子晶體聲波禁帶的影響[J];材料科學(xué)與工程學(xué)報(bào);2005年05期
5 黃小益,彭景翠,張高明,翦之漸;聲子晶體中彈性波帶隙與散射[J];功能材料;2005年02期
6 李曉春;易秀英;肖清武;梁宏宇;;三組元聲子晶體中的缺陷態(tài)[J];物理學(xué)報(bào);2006年05期
7 王留運(yùn);熊濱生;王興;;任意散射體二維聲子晶體的帶結(jié)構(gòu)計(jì)算方法[J];鄭州大學(xué)學(xué)報(bào)(工學(xué)版);2006年02期
8 王文剛;劉正猷;趙德剛;柯滿竹;;聲波在一維聲子晶體中共振隧穿的研究[J];物理學(xué)報(bào);2006年09期
9 塔金星;;21世紀(jì)最具潛力的新型帶隙材料——聲子晶體[J];現(xiàn)代物理知識;2006年05期
10 曾廣武;肖偉;程遠(yuǎn)勝;;多組聲子晶體復(fù)合結(jié)構(gòu)的隔聲性能[J];振動與沖擊;2007年01期
相關(guān)會議論文 前10條
1 王健君;;通過組裝膠體顆粒實(shí)現(xiàn)特超聲子晶體[A];中國化學(xué)會第27屆學(xué)術(shù)年會第04分會場摘要集[C];2010年
2 陳久久;秦波;程建春;;二維表面波聲子晶體的研究[A];中國聲學(xué)學(xué)會2005年青年學(xué)術(shù)會議[CYCA'05]論文集[C];2005年
3 許震宇;沈琦;龔益玲;;一維聲子晶體的數(shù)值和實(shí)驗(yàn)研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2005論文摘要集(下)[C];2005年
4 劉曉峰;汪越勝;;夾層聲子晶體板的缺陷態(tài)研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 吳英家;方慶川;凡友華;;新型聲學(xué)材料——聲子晶體的低頻高效隔聲性能研究[A];中國環(huán)境科學(xué)學(xué)會2009年學(xué)術(shù)年會論文集(第二卷)[C];2009年
6 徐偉;汪越勝;;二維聲子晶體的等效非局部連續(xù)介質(zhì)模型[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年
7 劉耀宗;孟浩;李黎;溫激鴻;;基于遺傳算法的聲子晶體梁振動傳輸特性優(yōu)化設(shè)計(jì)[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集[C];2007年
8 祝雪豐;闞威威;程建春;;采用超晶格平面波展開和諧頻響應(yīng)法對硅基蘭姆波聲子晶體的研究[A];中國聲學(xué)學(xué)會2009年青年學(xué)術(shù)會議[CYCA’09]論文集[C];2009年
9 周小微;程建春;;二維聲子晶體中低頻彈性波傳播的有效速度[A];中國聲學(xué)學(xué)會2009年青年學(xué)術(shù)會議[CYCA’09]論文集[C];2009年
10 汪越勝;;聲子晶體波傳播特性的參數(shù)表征及計(jì)算方法[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 記者 張建列 通訊員 馮春;利用聲波實(shí)現(xiàn)“隔空探物”[N];廣東科技報(bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 鄧科;聲子晶體及聲超常材料的特性調(diào)控與功能設(shè)計(jì)[D];武漢大學(xué);2010年
2 肖偉;聲子晶體型周期復(fù)合結(jié)構(gòu)禁帶特性研究[D];華中科技大學(xué);2007年
3 顧永偉;局域共振聲子晶體的優(yōu)化設(shè)計(jì)與模擬[D];上海交通大學(xué);2009年
4 蔡力;聲子晶體彈性波傳播特性研究[D];國防科學(xué)技術(shù)大學(xué);2008年
5 趙寰宇;二維阿基米德格子聲子晶體特性研究[D];北京工業(yè)大學(xué);2011年
6 李鳳蓮;計(jì)算二維聲子晶體帶隙及響應(yīng)譜的邊界積分方程法研究[D];北京交通大學(xué);2011年
7 劉軍;高Q聲子晶體聲波傳感機(jī)理及實(shí)驗(yàn)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2013年
8 付志強(qiáng);一維/準(zhǔn)一維變截面聲子晶體的研究及在功率超聲中的應(yīng)用[D];陜西師范大學(xué);2013年
9 魏瑞菊;基于對稱性的二維聲子晶體帶隙特性研究[D];北京工業(yè)大學(xué);2011年
10 王剛;聲子晶體局域共振帶隙機(jī)理及減振特性研究[D];國防科學(xué)技術(shù)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 王海洋;二維組合聲子晶體薄板振動性能研究[D];哈爾濱工業(yè)大學(xué);2008年
2 沈耀輝;二維三組元局域共振型聲子晶體穩(wěn)態(tài)響應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2010年
3 邱春印;二維聲子晶體的層間多重散射理論及聲子晶體相關(guān)的應(yīng)用設(shè)計(jì)[D];武漢大學(xué);2005年
4 馮昆;二維三組元聲子晶體低頻穩(wěn)態(tài)響應(yīng)探究[D];哈爾濱工業(yè)大學(xué);2011年
5 王連坤;用于聲子晶體檢測的光外差測量技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2010年
6 武維維;一維聲子晶體透射譜的理論研究[D];華中科技大學(xué);2011年
7 徐永剛;周期與非周期性一維聲子晶體能帶特性研究[D];陜西師范大學(xué);2013年
8 胡愛珍;聲子晶體缺陷態(tài)的溫度控制及蘭姆波禁帶的低頻調(diào)節(jié)[D];廣東工業(yè)大學(xué);2015年
9 籍夫建;外場對聲子晶體梁彎曲振動帶隙特性影響研究[D];國防科學(xué)技術(shù)大學(xué);2007年
10 柳天宇;一維壓電聲子晶體熱輸運(yùn)性質(zhì)的理論研究[D];天津大學(xué);2008年
,本文編號:2171867
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2171867.html