基于靜電紡絲技術(shù)的一維納米材料在濕度傳感器中的應(yīng)用
[Abstract]:The development and application of nanomaterials is a great innovation in the field of materials. Compared with traditional materials, nanomaterials have the advantages of high specific surface area, low cost and stable chemical properties. Among them, metal oxide based nanomaterials are widely used in sensor field. The difference in morphology, size and preparation method of nanomaterials has an important influence on their sensing performance. In this paper, one dimensional metal oxide nanomaterials were prepared by using high voltage electrostatic spinning technology, and the structure and size of nanomaterials were improved. The experimental results show that the humidity sensor based on this kind of nanomaterials has great improvement in response time, sensitivity and stability. The research work in this paper mainly includes the following aspects: electrospinning technology has a unique advantage in the preparation of one-dimensional nanomaterials, and it has been treated by strict annealing procedure. The one-dimensional nanostructures were mostly fibrous and tubular. The nanomaterials with one-dimensional structure have a large specific surface area, which can effectively improve the humidity sensitivity of the materials and make the sensors have the characteristics of high sensitivity and rapid response. In the third chapter, the preparation, testing process and response mechanism of G/SnO_x/CF are introduced in detail. Using stannous chloride, anhydrous ethanol N-dimethylformamide (DMF) and polyethylpyrrolidone (PVP), SnO_2 nanotubes SnOx / CF nanofibers were successfully prepared. SEM and TEM characterization showed that the surface of Sno _ 2 nanotubes was rough. The tube wall is composed of SnO_2 particles and SnOx particles are dispersed on the inner and surface of carbon fiber. The maximum sensitivity of the humidity sensor based on composite G/SnO_x/CF is 6.22 and the response time is 6-8 s. After accurate calculation, the sensitivity of the G / SnOX / CF humidity sensor is about twice as high as that of the SnO_x/CF humidity sensor in the same test environment after the addition of graphene. In chapter 4, the wall of ZnFe_2O_4 nanotubes, ZnFeS _ 2O _ 4, which has been successfully fabricated by electrospinning technology, is mainly composed of ZnFe_2O_4 particles and the surface is rough. The measurements show that the average diameter of ZnFe2O4 nanotubes is 80 nm. The highest sensitivity of humidity sensor based on ZnFe_2O_4 is 85.03 (75%RH~95%RH). The humidity sensor is also excellent in fast response, and its response time is 5.60 s (35%RH~75%RH), which is faster than that of the same type of humidity sensor.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;TP212.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董曉英;董鑫;;靜電紡絲納米纖維的制備工藝及其應(yīng)用[J];合成纖維工業(yè);2009年04期
2 薛聰;胡影影;黃爭鳴;;靜電紡絲原理研究進(jìn)展[J];高分子通報(bào);2009年06期
3 韓悅文;陳海燕;黃春雄;;光電技術(shù)在濕度傳感器中的應(yīng)用[J];光電技術(shù)應(yīng)用;2008年03期
4 王志剛;石鳳良;劉先燁;;電阻和電容型濕度傳感器的物理性能及其應(yīng)用[J];物理通報(bào);2008年02期
5 王興雪;王海濤;鐘偉;杜強(qiáng)國;許元澤;;靜電紡絲納米纖維的方法與應(yīng)用現(xiàn)狀[J];非織造布;2007年02期
6 施利毅;馬書蕊;馮欣;王少飛;;一維氧化鋅納米棒制備技術(shù)的最新研究進(jìn)展[J];材料導(dǎo)報(bào);2006年S2期
7 郝保紅;黃俊華;;晶體生長機(jī)理的研究綜述[J];北京石油化工學(xué)院學(xué)報(bào);2006年02期
8 邱芯薇;潘志娟;孫道權(quán);張林春;;靜電紡絲素纖維的微細(xì)結(jié)構(gòu)[J];紡織學(xué)報(bào);2006年06期
9 遲天陽;楊方;果莉;;節(jié)水灌溉中土壤濕度傳感器的應(yīng)用[J];東北農(nóng)業(yè)大學(xué)學(xué)報(bào);2006年01期
10 顧磊,秦明,黃慶安;一種新型的CMOS集成濕度傳感器[J];微納電子技術(shù);2003年Z1期
,本文編號(hào):2172260
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2172260.html