貴金屬納米晶合成及其性能研究
[Abstract]:As an alternative to fossil fuels, the industrialization of fuel cells is a global dream. Up to now, Pt is still considered the most effective electrocatalyst in the oxidation and reduction reactions of fuel cells. However, the low toxicity of Pt to CO and its high cost limit its wide application. As a more promising way, Pt-M bimetal electrocatalysis As a result of synergistic effects, it often displays the electronic and chemical properties that exceed the parent metal. This provides an opportunity for the development of a new electrocatalyst with enhanced selectivity, activity and stability. For example, the preparation of bimetallic core / shell particles has been paid attention to by the preparation of the Xia group precursor and the preparation of the bimetallic core / shell particles. There are many reports of nuclear shell particles. But so far, it is difficult to prepare this structure relative to the single metal, which is complicated by the different reduction rate of metal salts. In addition, the structural inducer used in the synthesis process is difficult to make in the later period because of its very strong adsorbability to the metal surface. Removal, which makes the catalytic activity of the synthesized catalyst fail to achieve the desired effect.
In view of the above problems, it is urgent to develop a simple and feasible synthesis method for the preparation of high performance metal catalysts without using structural inducers. Therefore, we adopt UV reduction to synthesize metal nanoparticles without any surface active agent or structural inducer, and present the synthesis of Pt nanoscale and Pd@Pt bimetallic catalysts by self assembled synthesis. Excellent catalytic performance.
Using the principle of silver mirror reaction, using glucose as reducing agent to reduce chlorosanic acid and the preparation of monodisperse Au nanoparticles under the presence of surfactants, the effects of adding surfactants on the morphology and stability of the prepared products in the reaction system are studied by UV visible spectra. The addition of ionic surfactants is beneficial to slow down the reaction speed of silver mirror. The anionic surfactant system can obtain the size of 15nmAu nanoparticles, which can obtain a certain dispersion. The 5-10nm spherical Au nanoparticles can be obtained in the nonionic surfactant system, and the dispersibility is better. This is expected to be the other double gold of the Au crystal. Genera and polymetallic catalysts.
The Pt nano flower structure was synthesized by a simple and easy to operate light induction method, and showed better methanol oxidation performance. Under ultraviolet light, no surfactant and structural inducer was added to the experimental system. The H2PtCl6 solution was reduced with methanol as a reductant, and the Pt nanostructure was obtained. The ratio of methanol to water was adjusted by adjusting the ratio of methanol to water. For example, the substitution of methanol, the light intensity parameters, the concentration of the precursor obtained the best experimental parameters to study the formation factors of Pt nanoscale, and also study the formation mechanism of Pt nanoscale with the evolution of the temporal change morphology. Finally, the catalytic activity of methanol shows a higher catalytic activity: the Pt nanoscale in the acid medium. The mass ratio activity is 2.3 times that of commercial Pt/C, 3.9 times as much as commercial Pt black, and the mass ratio of Pt nanoscale in alkaline medium is 2.8 times that of commercial Pt/C, and 5 times of commercial Pt black.
On the basis of single metal, we studied the preparation conditions of Pd@Pt bimetallic catalysts and the characterization of the catalytic performance of methanol. First, the conditions for the synthesis conditions of Pd crystals were regulated and the conditions for the optimum synthetic crystal species were obtained. Then the optimum experimental conditions for the synthesis of Pd@Pt were studied with the Pd crystal seed as the core, and the influence of the precursor volume on the morphology was investigated. The formation mechanism of direct illumination and methanol reduction of metal nanoparticles was deduced. In addition, the investigation of the surface valence and element distribution of the catalyst by XPS was used to further verify the high catalytic activity and stability of the Pd@Pt under the best experimental conditions: the mass ratio of Pd@Pt nanostructures in the acid medium was Pt 2.7 times the structure of the nanoscale, 6.4 times the commercial Pt/C and 10.5 times the commercial Pt black. The quality of the Pd@Pt nanostructure in the alkaline medium is 2.5 times more than the structure of the Pt nanometers, 7.1 times the commercial Pt/C, and 12.5 times the commercial Pt black.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O643.36;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 滿石清;樊耘;湯俊琪;;帽狀金屬納米結(jié)構(gòu)的制備、性質(zhì)及應(yīng)用[J];暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版);2012年05期
2 ;世界首次利用金屬納米結(jié)構(gòu)的光納米成像技術(shù)[J];吉林農(nóng)業(yè)農(nóng)村經(jīng)濟(jì)信息;2006年02期
3 孟慶平,戎詠華,徐祖耀;金屬納米晶的相穩(wěn)定性[J];中國(guó)科學(xué)E輯:技術(shù)科學(xué);2002年04期
4 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計(jì)算機(jī)仿真與實(shí)驗(yàn)研究[J];中國(guó)體視學(xué)與圖像分析;2008年03期
5 李志遠(yuǎn);李家方;;金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用[J];科學(xué)通報(bào);2011年32期
6 金翼水;劉輔庭;;高功能性金屬納米纖維的制造及其性能評(píng)估[J];合成纖維;2011年10期
7 楊國(guó)楨;;評(píng)《金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用》[J];科學(xué)通報(bào);2012年Z1期
8 黃敏;楊修春;趙建富;顧幸勇;梁華銀;錢士雄;;銀銅雙金屬納米晶玻璃復(fù)合材料光學(xué)三階非線性的研究[J];中國(guó)陶瓷工業(yè);2012年05期
9 張治平;張亞文;;可控形貌的雙金屬納米晶催化劑的研究進(jìn)展[J];大學(xué)化學(xué);2013年05期
10 于偉泳,劉漫紅,劉漢范,張?jiān)?高分子穩(wěn)定釕金屬納米簇的制備與表征[J];電子顯微學(xué)報(bào);1998年05期
相關(guān)會(huì)議論文 前10條
1 王仲玨;;金屬納米變質(zhì)技術(shù)新進(jìn)展[A];2010年中國(guó)鑄造活動(dòng)周論文集[C];2010年
2 李志遠(yuǎn);;金屬納米微結(jié)構(gòu)和顆粒的表面等離子體共振[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
3 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計(jì)算機(jī)仿真與實(shí)驗(yàn)研究[A];第十二屆中國(guó)體視學(xué)與圖像分析學(xué)術(shù)會(huì)議論文集[C];2008年
4 李亞棟;;金屬納米催化[A];第六屆全國(guó)物理無(wú)機(jī)化學(xué)會(huì)議論文摘要集[C];2012年
5 李亞棟;;金屬納米催化[A];第十二屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
6 宋曉艷;張久興;李乃苗;高金萍;楊克勇;劉雪梅;;金屬納米晶和納米粒子材料熱力學(xué)特性的模擬計(jì)算與實(shí)驗(yàn)研究[A];2005年全國(guó)計(jì)算材料、模擬與圖像分析學(xué)術(shù)會(huì)議論文集[C];2005年
7 王樹林;李生娟;杜妍辰;徐波;李來(lái)強(qiáng);朱巖;;金屬納米結(jié)構(gòu)的干法室溫大規(guī)模制備[A];第八屆全國(guó)顆粒制備與處理學(xué)術(shù)和應(yīng)用研討會(huì)論文集[C];2007年
8 吳炳輝;陳光需;代燕;鄭南峰;;貴金屬納米晶的表界面調(diào)控[A];第十二屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
9 郭霞;張巧;葉偉;謝芳;趙清;楊劍;;金基納米棒的選擇性腐蝕制備新穎多金屬納米結(jié)構(gòu)[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
10 童明良;劉俊良;冷際東;郭鵬虎;;系列4f/3d-4f金屬納米分子磁體的組裝與磁-構(gòu)關(guān)系研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前3條
1 本報(bào)記者 危麗瓊;雙金屬納米簇催化劑“1+1>2”[N];中國(guó)化工報(bào);2013年
2 張巍巍;美開發(fā)出高度控制金屬納米結(jié)構(gòu)的方法[N];科技日?qǐng)?bào);2012年
3 記者 毛黎;碳納米管與金屬納米導(dǎo)線成功連接[N];科技日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 孫明斐;異常一維金屬納米結(jié)構(gòu)彈性及塑性的分子動(dòng)力學(xué)模似表征[D];復(fù)旦大學(xué);2014年
2 李楠庭;石墨烯負(fù)載金屬納米結(jié)構(gòu)的制備及性能表征[D];南京大學(xué);2015年
3 夏良平;基于金屬納米結(jié)構(gòu)的納光子器件研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2014年
4 古楊;基于局域表面等離激元共振的金屬納米結(jié)構(gòu)折射率傳感[D];武漢大學(xué);2011年
5 陳陽(yáng);熒光金屬納米簇的制備與生物檢測(cè)應(yīng)用[D];吉林大學(xué);2015年
6 王麗;貴金屬納米結(jié)構(gòu)的光學(xué)特性和利用表面等離子體增強(qiáng)光學(xué)效應(yīng)的研究[D];浙江大學(xué);2011年
7 朱鵬;基于金屬納米結(jié)構(gòu)的光場(chǎng)調(diào)制方法研究[D];哈爾濱工業(yè)大學(xué);2013年
8 劉濤;表面等離激元金屬納米結(jié)構(gòu)的制備及應(yīng)用[D];浙江大學(xué);2011年
9 黃s
本文編號(hào):2172873
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2172873.html