基于機(jī)網(wǎng)協(xié)調(diào)的共振機(jī)理低頻振蕩影響因素分析及對(duì)策研究
本文關(guān)鍵詞: 機(jī)網(wǎng)協(xié)調(diào) 共振機(jī)理 低頻振蕩 調(diào)速系統(tǒng) 汽輪機(jī)熱力系統(tǒng) GPSS 出處:《華南理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:電力系統(tǒng)互聯(lián)能有效提高系統(tǒng)的經(jīng)濟(jì)性和可靠性,而大電網(wǎng)互聯(lián)后復(fù)雜的網(wǎng)架結(jié)構(gòu)也帶來了較多的動(dòng)態(tài)穩(wěn)定問題。低頻振蕩問題作為大電網(wǎng)互聯(lián)后最可能發(fā)生的穩(wěn)定問題,是威脅電網(wǎng)安全穩(wěn)定運(yùn)行的重要問題之一。 目前,對(duì)負(fù)阻尼機(jī)理的低頻振蕩較為常見,且相關(guān)理論較為成熟。普遍認(rèn)為裝設(shè)電力系統(tǒng)穩(wěn)定器(PSS)為系統(tǒng)提供適當(dāng)?shù)恼枘崮苡行У囊种频皖l振蕩的發(fā)生。實(shí)際運(yùn)行經(jīng)驗(yàn)表明,負(fù)阻尼機(jī)理在某些類型的低頻振蕩中將不再適用。 本文在分析低頻振蕩傳統(tǒng)機(jī)理的基礎(chǔ)上,全面的闡述了共振型低頻振蕩的概念,并對(duì)共振機(jī)理與負(fù)阻尼機(jī)理低頻振蕩的特征判別進(jìn)行了研究。基于機(jī)網(wǎng)協(xié)調(diào)考慮對(duì)電網(wǎng)側(cè)、機(jī)組側(cè)各種形式的擾動(dòng)對(duì)低頻振蕩的影響進(jìn)行了分析,并綜合考慮汽輪機(jī)、調(diào)速系統(tǒng)和電力系統(tǒng)之間的相互影響,從汽輪機(jī)及其調(diào)速系統(tǒng)中尋找共振機(jī)理低頻振蕩可能的擾動(dòng)源,即造成機(jī)械功率周期性波動(dòng)的原因。并通過仿真得出了汽輪機(jī)調(diào)速系統(tǒng)的擺動(dòng)以及汽輪機(jī)蒸汽壓力脈動(dòng)對(duì)機(jī)組機(jī)械功率的影響及其與電力系統(tǒng)共振機(jī)理低頻振蕩的關(guān)系。 本文打破以往研究低頻振蕩時(shí)忽略調(diào)速系統(tǒng)及汽輪機(jī)熱力系統(tǒng)對(duì)電力系統(tǒng)的影響而孤立的研究電力系統(tǒng),并通過理論推導(dǎo)、仿真研究和實(shí)例分析指出:調(diào)速系統(tǒng)及汽輪機(jī)的各環(huán)節(jié)和參數(shù)設(shè)置不當(dāng)或者由于某些機(jī)械故障可能會(huì)造成汽輪機(jī)組機(jī)械功率發(fā)生相應(yīng)波動(dòng),進(jìn)而可能引發(fā)電力系統(tǒng)共振機(jī)理的低頻振蕩;不同位置相同擾動(dòng)量情況下,機(jī)側(cè)較網(wǎng)側(cè)的影響更為嚴(yán)重。這種類型的低頻振蕩運(yùn)用PSS進(jìn)行抑制,,效果不甚理想,需要在調(diào)速系統(tǒng)中設(shè)計(jì)并安裝GPSS達(dá)到比較好的抑制效果。
[Abstract]:Power system interconnection can effectively improve the economy and reliability of the system. The complex grid structure after the interconnection of large power grid also brings more dynamic stability problems. Low frequency oscillation is the most likely stability problem after the interconnection of large power grid. It is one of the important problems threatening the safe and stable operation of power grid. At present, low frequency oscillation of negative damping mechanism is more common. It is generally considered that the installation of power system stabilizer (PSS) can effectively restrain the occurrence of low frequency oscillation by providing proper positive damping for the system. The negative damping mechanism will no longer be applicable to some types of low frequency oscillations. Based on the analysis of the traditional mechanism of low frequency oscillation, the concept of resonance low frequency oscillation is expounded in this paper. The characteristic discrimination of resonance mechanism and negative damping mechanism of low frequency oscillation is studied. Based on the consideration of power grid coordination, the influence of various types of disturbances on low frequency oscillation on the power grid side and the unit side is analyzed. Considering the interaction among steam turbine, speed regulating system and power system, the possible disturbance source of resonance mechanism low frequency oscillation is found from steam turbine and its governing system. The reason of periodic fluctuation of mechanical power is obtained by simulation, and the influence of turbine governing system swing and steam pressure pulsation on the mechanical power of turbine and the low frequency oscillation of resonance mechanism between turbine and power system are obtained. The relationship. This paper breaks the previous study of low-frequency oscillation ignore the speed control system and steam turbine thermal system on the power system and isolated research power system, and through theoretical derivation. The simulation research and the analysis of examples show that the mechanical power of steam turbine may fluctuate due to the improper setting of various links and parameters of the governing system and steam turbine or because of some mechanical faults. Furthermore, the low frequency oscillation of the resonance mechanism of power system may be initiated. Under the condition of the same disturbance quantity at different positions, the influence of the engine side is more serious than that of the network side. This type of low frequency oscillation is suppressed by PSS, and the effect is not very satisfactory. Need to design and install GPSS in the speed control system to achieve better suppression effect.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM712
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷根代,郝玉山;發(fā)電機(jī)調(diào)速控制中自振蕩的有效抑制[J];電力系統(tǒng)自動(dòng)化;2001年18期
2 王茂海;徐正山;謝開;呂少坤;;基于WAMS的系統(tǒng)自然頻率特性系數(shù)確定方法[J];電力系統(tǒng)自動(dòng)化;2007年03期
3 黃宗君;李興源;晁劍;康鵬;;貴陽南部電網(wǎng)“7·7”事故的仿真反演和分析[J];電力系統(tǒng)自動(dòng)化;2007年09期
4 楊玉華,杜保安;多機(jī)電力系統(tǒng)穩(wěn)定及振蕩現(xiàn)象研究[J];電氣傳動(dòng)自動(dòng)化;1997年03期
5 胡學(xué)浩;美加聯(lián)合電網(wǎng)大面積停電事故的反思和啟示[J];電網(wǎng)技術(shù);2003年09期
6 韓禎祥,曹一家;電力系統(tǒng)的安全性及防治措施[J];電網(wǎng)技術(shù);2004年09期
7 常乃超,蘭洲,甘德強(qiáng),倪以信;廣域測(cè)量系統(tǒng)在電力系統(tǒng)分析及控制中的應(yīng)用綜述[J];電網(wǎng)技術(shù);2005年10期
8 劉紅超;雷憲章;李興源;孫福杰;;互聯(lián)電力系統(tǒng)中PSS的全局協(xié)調(diào)優(yōu)化[J];電網(wǎng)技術(shù);2006年08期
9 湯涌;;電力系統(tǒng)強(qiáng)迫功率振蕩的基礎(chǔ)理論[J];電網(wǎng)技術(shù);2006年10期
10 朱方;湯涌;張東霞;張紅斌;蔣宜國;蔣衛(wèi)平;趙紅光;;發(fā)電機(jī)勵(lì)磁和調(diào)速器模型參數(shù)對(duì)東北電網(wǎng)大擾動(dòng)試驗(yàn)仿真計(jì)算的影響[J];電網(wǎng)技術(shù);2007年04期
本文編號(hào):1458580
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/dianlilw/1458580.html