基于廣域測量技術戴維南等值參數(shù)的計算及在電壓穩(wěn)定性分析中的應用
本文關鍵詞: 電力系統(tǒng) 戴維南等值參數(shù) 導納矩陣 電壓穩(wěn)定 出處:《重慶大學》2014年碩士論文 論文類型:學位論文
【摘要】:現(xiàn)代電力系統(tǒng)作為當今規(guī)模最大、結構最復雜的人造系統(tǒng)之一,其穩(wěn)定性問題一直是電力科研人員比較關注和重視的課題。通過研究發(fā)現(xiàn)整個系統(tǒng)的穩(wěn)定性往往與某一點或某一區(qū)域的穩(wěn)定有著密切的聯(lián)系,于是怎樣找到電壓薄弱節(jié)點成為對該節(jié)點進行電壓穩(wěn)定性分析的關鍵。 由于電壓崩潰具有隱蔽性和突發(fā)性,因此對電壓薄弱節(jié)點的監(jiān)控是非常必要的。尋找電壓薄弱節(jié)點的方法往往是采用跟蹤節(jié)點的戴維南等值參數(shù),所以,戴維南等值參數(shù)值要務必精確,只有快速的尋找到系統(tǒng)的電壓薄弱節(jié)點和薄弱區(qū)域并對該節(jié)點或區(qū)域進行調控才能確保整個系統(tǒng)的穩(wěn)定運行。本文從這一角度出發(fā),將廣域測量技術相量測量單元的測量結果用于論文提出的計算方法,對研究節(jié)點的戴維南等值參數(shù)進行求解。用全導納矩陣求解戴維南等值參數(shù)的方法理論嚴謹,不存在任何假設條件,同時對某時刻的戴維南等值參數(shù)的求解只需該時刻的參數(shù)向量,避免了采用不同時刻參數(shù)值帶來的零點漂移問題。論文通過理論分析及算例證明得出了節(jié)點自阻抗與該節(jié)點戴維南等值阻抗以及負荷阻抗之間存在的重要關系:自阻抗等于該節(jié)點戴維南等值阻抗與負荷阻抗的并聯(lián)。由于采用的戴維南等值阻抗求解方法依賴于對節(jié)點網絡方程導納矩陣逆矩陣的求解,從求解公式可以看出矩陣A、B、C、D均為對稱矩陣,所以,本文對電力系統(tǒng)中對稱矩陣逆矩陣的求解過程給出了新的計算方法:首先將對稱矩陣分解為LDLT的形式,再分別對三角矩陣進行求逆。為保證戴維南等值參數(shù)計算方法的正確性,采用簡單三節(jié)點網絡就論文提出的方法給與了證明,通過公式對比,可以看出本文提出的求解戴維南等值參數(shù)的方法不存在理論誤差。 該方法可應用于電力系統(tǒng)中的任意負荷節(jié)點,,且適用于戴維南等值參數(shù)的靜態(tài)和動態(tài)求解,以便確保對系統(tǒng)狀態(tài)進行實時跟蹤。采用IEEE14節(jié)點系統(tǒng)對本文提出的計算方法進行仿真計算,通過對不同方法節(jié)點的戴維南等值參數(shù)的計算和比較,可以看出本文采用的方法計算精度高,過程簡單,具有更好的實際應用價值。另外論文在戴維南參數(shù)等值的基礎上對系統(tǒng)負荷節(jié)點的阻抗模裕度進行了求解,并對某一特定節(jié)點進行了電壓穩(wěn)定性分析。
[Abstract]:Modern power system is one of the largest and most complex artificial systems. The stability of the whole system is often closely related to the stability of a certain point or region. So how to find the weak voltage node becomes the key to the voltage stability analysis. Because the voltage collapse is hidden and sudden, it is very necessary to monitor the weak voltage node. The method to find the weak voltage node is to use the Thevenin equivalent parameter of the tracking node. Thevenin's equivalent values must be accurate. Only by finding the weak voltage node and the weak area of the system quickly and regulating the node or region can we ensure the stable operation of the whole system. The measurement results of wide-area measurement technology phasor measurement unit are applied to the calculation method proposed in this paper. The method of using the full admittance matrix to solve the Thevenin equivalent parameters is rigorous in theory, and there are no hypothetical conditions. At the same time, the solution of the Davinan equivalent parameters at a certain time requires only the parameter vector of that moment. The 00:00 drift problem caused by using parameters at different times is avoided. The important relationship between node self-impedance, Thevenin equivalent impedance and load impedance is obtained by theoretical analysis and numerical example. The self-impedance is equal to the equivalent impedance of the node in parallel with the load impedance. The solution method of the Thevenin equivalent impedance depends on the solution of the inverse matrix of admittance matrix for the node network equation. From the solution formula, we can see that the matrix A BX C D is all symmetric matrix, so. In this paper, a new method for solving the inverse matrix of symmetric matrix in power system is presented. Firstly, the symmetric matrix is decomposed into the form of LDLT. In order to ensure the correctness of the Thevenin equivalent parameter calculation method, the method proposed in this paper is proved by simple three-node network, and the formula is compared. It can be seen that there is no theoretical error in the method proposed in this paper for solving the Thevenin equivalent parameters. This method can be applied to arbitrary load nodes in power system and can be used to solve the static and dynamic parameters of Davinan equivalent parameters. In order to ensure the real-time tracking of system state, the proposed method is simulated by using IEEE14 node system, and the calculation and comparison of the Thevenin equivalent parameters of different method nodes are carried out. It can be seen that the method used in this paper is of high accuracy, simple process and better practical application value. In addition, the impedance modulus margin of the load node of the system is solved on the basis of the equivalent of Davinan parameters. The voltage stability of a particular node is analyzed.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM712
【參考文獻】
相關期刊論文 前10條
1 華新;左玉輝;;中國電力行業(yè)可持續(xù)發(fā)展研究[J];環(huán)境科學與管理;2007年08期
2 董永勝;;一種求復數(shù)矩陣逆的迭代方法[J];長春大學學報;2006年04期
3 董永勝;;兩種求復數(shù)矩陣逆的方法[J];長春工程學院學報(自然科學版);2006年02期
4 傅萬學;張衛(wèi)東;邢應春;;基于靜態(tài)電壓穩(wěn)定分析的電壓薄弱節(jié)點研究[J];電力科學與工程;2011年03期
5 唐斯慶;張彌;李建設;吳小辰;蔣琨;舒雙焰;;海南電網“9·26"大面積停電事故的分析與總結[J];電力系統(tǒng)自動化;2006年01期
6 包黎昕,張步涵,段獻忠,何仰贊;電壓穩(wěn)定裕度指標分析方法綜述[J];電力系統(tǒng)自動化;1999年08期
7 李日波;吳政球;葛建偉;劉鼎;朱文慧;黃銀華;張超;;靈敏度法求取戴維南等效參數(shù)的靜態(tài)電壓穩(wěn)定分析[J];電力系統(tǒng)及其自動化學報;2011年06期
8 王漪,柳焯;基于戴維南等值的系統(tǒng)參數(shù)跟蹤估計[J];電網技術;2000年11期
9 印永華,郭劍波,趙建軍,卜廣全;美加“8.14”大停電事故初步分析以及應吸取的教訓[J];電網技術;2003年10期
10 謝小榮,李紅軍,吳京濤,張濤,童陸園;同步相量技術應用于電力系統(tǒng)暫態(tài)穩(wěn)定性控制的可行性分析[J];電網技術;2004年01期
相關博士學位論文 前1條
1 汪洋;廣域測量系統(tǒng)可靠性及基于廣域測量系統(tǒng)的電壓穩(wěn)定性研究[D];重慶大學;2009年
本文編號:1460208
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/dianlilw/1460208.html