特高壓交流輸電線路繞擊耐雷性能及其防雷措施研究
本文關(guān)鍵詞: 特高壓 雷電繞擊 電氣幾何模型 ATP-EMTP 沖擊電暈 ANSYS 差異化防雷 出處:《西華大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:特高壓電網(wǎng)具有輸電距離遠(yuǎn)、送電容量大、線路損耗低、相對(duì)節(jié)省工程建設(shè)投資、減少土地使用面積等優(yōu)點(diǎn),對(duì)我國(guó)電力資源的優(yōu)化配置和國(guó)民經(jīng)濟(jì)可持續(xù)健康發(fā)展戰(zhàn)有特別重要的意義,然而其自身的特殊性也決定了運(yùn)行過程中往往伴隨著各種問題,本文重點(diǎn)分析了1000kV特高壓電網(wǎng)的過電壓?jiǎn)栴}和線路周圍電場(chǎng)環(huán)境問題。運(yùn)行經(jīng)驗(yàn)表明:超/特高壓交流輸電線路雷擊跳閘事故主要是由雷電繞擊相導(dǎo)線造成的。本文利用改進(jìn)電氣幾何模型(EGM)分別對(duì)不同雷電流幅值、沿線地形地貌、地線保護(hù)角和導(dǎo)線工作電壓下輸電線路的繞擊耐雷性能做了定性分析,,還闡述線路絕緣水平、地面植被對(duì)繞擊的影響。最后,分別歸納總結(jié)了各影響因素下線路繞擊性能的一般規(guī)律。為了彌補(bǔ)EGM分析模型無(wú)法反映繞擊時(shí),導(dǎo)線上雷電過電壓波的傳播過程的缺陷,又建立了一種既考慮地線上電暈和起暈導(dǎo)線間耦合作用,又考慮輸電線路與大地間電暈電容分布特點(diǎn)的多導(dǎo)線沖擊電暈?zāi)P,并運(yùn)用電磁暫態(tài)計(jì)算軟件ATP-EMTP搭建了特高壓?jiǎn)位亟涣鬏旊娋路繞擊仿真模型,通過仿真得到了計(jì)及沖擊電暈線路上雷電過電壓波的傳播特性;本文利用ANSYS有限元分析軟件分析了特高壓?jiǎn)位亟涣鬏旊娋路正常運(yùn)行時(shí)周圍電場(chǎng)環(huán)境,以及正常運(yùn)行和存在雷電放電兩種情形下輸電線路表面電場(chǎng)強(qiáng)度分布狀況。仿真結(jié)果表明:特高壓?jiǎn)位亟涣鬏旊娋路下方電場(chǎng)環(huán)境滿足國(guó)家相關(guān)標(biāo)準(zhǔn)的限值要求;雷電放電對(duì)地線表面場(chǎng)強(qiáng)分布影響很大,但對(duì)相導(dǎo)線的影響很有限,地線上極易產(chǎn)生上行先導(dǎo)。最后,在以上分析計(jì)算基礎(chǔ)上給出了特高壓?jiǎn)位亟涣鬏旊娋路差異化防雷綜合治理措施的建議:即應(yīng)采用“疏”和“堵”結(jié)合因地制宜的差異化綜合配置思路,有針對(duì)性地開展差異化繞擊防治工作,采取重點(diǎn)加強(qiáng)重要線路段和多雷區(qū)、強(qiáng)雷區(qū)及易繞擊閃絡(luò)段線路保護(hù)的策略,提高防雷的整體技術(shù)經(jīng)濟(jì)性。
[Abstract]:UHV power grid has the advantages of long transmission distance, large transmission capacity, low line loss, relatively saving construction investment, reducing land use area and so on. It is of great significance for the optimal allocation of power resources and the sustainable and healthy development of the national economy. However, its particularity also determines the operation process is often accompanied by a variety of problems. In this paper, the overvoltage problem of 1000kV UHV network and the electric field environment around the transmission line are analyzed emphatically. The operation experience shows that:. The lightning tripping accident in UHV / UHV AC transmission lines is mainly caused by lightning wound phase conductors. EGM) for different lightning current amplitudes. The characteristics of lightning resistance of transmission line under ground protection angle and conductor voltage are analyzed qualitatively, and the influence of line insulation level and ground vegetation on wound failure is also discussed. In order to make up for the defects in the propagation process of lightning overvoltage wave on the conductor, the EGM analysis model can not reflect the propagation process of the lightning overvoltage wave under the influence of various factors, in order to compensate for the defects of the EGM analysis model can not reflect the propagation process of the lightning overvoltage wave. A multi-conductor impulse corona model considering the coupling between corona and corona conductor on ground wire and the characteristics of corona capacitance distribution between transmission line and earth is also established. The simulation model of EHV single circuit AC transmission line is built by using electromagnetic transient calculation software ATP-EMTP, and the propagation characteristics of lightning overvoltage wave on impulse corona line are obtained by simulation. In this paper, ANSYS finite element analysis software is used to analyze the electric field surrounding UHV single circuit AC transmission line when it is in normal operation. And the distribution of electric field intensity on the surface of transmission line under the condition of normal operation and lightning discharge. The simulation results show that:. The electric field environment under UHV single circuit AC transmission line meets the limit requirement of relevant national standards; Lightning discharge has a great influence on the distribution of field intensity on the surface of ground wire, but the influence on phase conductor is very limited. On the basis of the above analysis and calculation, the paper gives the suggestion of comprehensive measures for the differential lightning protection of UHV single circuit AC transmission lines: that is, we should adopt the "sparse" and "blocking" combined with local conditions of the differential comprehensive configuration thinking. In order to improve the overall technical and economic efficiency of lightning protection, the prevention and control work of differential wound strike is carried out, and the strategy of strengthening the line protection of important line sections and multiple mined areas, strong minefields and flashover sections is adopted to improve the overall technical and economic efficiency of lightning protection.
【學(xué)位授予單位】:西華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM863
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李瑞芳;吳廣寧;曹曉斌;馬御棠;劉平;蘇杰;;雷電流幅值概率計(jì)算公式[J];電工技術(shù)學(xué)報(bào);2011年04期
2 束洪春,司大軍,于繼來(lái);雷擊輸電線路電磁暫態(tài)仿真[J];電力系統(tǒng)自動(dòng)化;2005年17期
3 易輝;熊幼京;;1000kV交流特高壓輸電線路運(yùn)行特性分析[J];電網(wǎng)技術(shù);2006年15期
4 邵方殷;;1000kV特高壓輸電線路的電磁環(huán)境[J];電網(wǎng)技術(shù);2007年22期
5 王東舉;周浩;陳稼苗;勞建明;朱天浩;包建強(qiáng);張利庭;王堅(jiān)敏;;特高桿塔的多波阻抗模型設(shè)計(jì)及雷擊暫態(tài)特性分析[J];電網(wǎng)技術(shù);2007年23期
6 彭謙;李軍;卞鵬;康東升;單志祥;;改進(jìn)電氣幾何模型法在1000kV輸電線路雷電繞擊跳閘率計(jì)算中的應(yīng)用[J];電網(wǎng)技術(shù);2010年09期
7 杜穎;;超/特高壓輸電線路耐雷性能計(jì)算方法探討[J];廣東輸電與變電技術(shù);2010年06期
8 賈磊;舒亮;鄭士普;謝鵬;孫冬慧;施圍;;計(jì)及工頻電壓的輸電線路耐雷水平的研究[J];高電壓技術(shù);2006年11期
9 陳家宏;王海濤;馮萬(wàn)興;童雪芳;李曉嵐;;1000kV線路走廊的雷電參數(shù)及易閃線段分析[J];高電壓技術(shù);2006年12期
10 李曉嵐;杜忠東;;1000kV特高壓輸電線路防繞擊問題的探討[J];高電壓技術(shù);2006年12期
相關(guān)博士學(xué)位論文 前3條
1 王曉燕;特高壓交流輸電線路電磁環(huán)境研究[D];山東大學(xué);2011年
2 伏進(jìn);特高壓直流輸電線路耐雷性能分析方法研究[D];重慶大學(xué);2009年
3 李瑞芳;雷電活動(dòng)及地形地貌對(duì)輸電線路繞擊特性的影響研究[D];西南交通大學(xué);2012年
本文編號(hào):1470270
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/dianlilw/1470270.html