面向可靠性和振動(dòng)特性的TBM主軸承結(jié)構(gòu)設(shè)計(jì)
[Abstract]:Since the 21st century, the development and utilization of underground space have been increasing in various countries in the world. As an efficient, safe and green tunneling equipment, the full-section rock tunneling machine (TBM) has become the first hard rock tunnel forming equipment. And has a very broad market prospects. As the key bearing part of the main driving engine, the main bearing has high safety, stability and reliability due to its special working environment. Therefore, it is necessary to study the structure design of the main bearing based on the traditional design theory and method of main bearing, which is one of the new directions that enterprises in the industry pay more attention to the design of the main bearing. According to the lack of early load information in the design of the main bearing, the stress spectrum of the main bearing in the driving process is predicted from the dynamic driving load simulation of the cutter head. Then the dynamic reliability prediction method of the main bearing system is established by means of the structural fatigue reliability calculation model under random stress and the failure correlation characteristics of the system components. Based on the study of the stiffness characteristics of the main bearing system, the vibration degree of the main bearing under time-varying load excitation is analyzed, and the mapping relationship between the structural parameters of the main bearing and the vibration characteristic parameters of the main bearing is given. The optimum design model of structural parameters considering fatigue reliability and vibration characteristics is established. The specific work and main contents of the paper can be described as follows: (1) according to the characteristics of continuous tunneling of roadheader, the layout of cutting tools with composite strata and cutters is established. The method of simulating the time history of cutting load and composite load of cutter head is presented. According to the structural characteristics of the main bearing system, the static load and stress distribution of the main bearing with asymmetric parameters are calculated, and the stress spectrum under the dynamic load is compiled, and the rain flow counting method is used to deal with and synthesize the stress spectrum under the dynamic load. The key parameters of stress distribution for fatigue reliability analysis are obtained. (2) based on the stress intensity interference model, the fatigue reliability of main bearing under random external load is predicted. The residual strength time history of the structure is studied by the nonlinear degradation theory of strength and the dispersion of the material itself. JC method is used to calculate the reliability of the main bearing structure, and the reliability calculation method based on the correlation matrix and Boolean function is established according to the failure relation in the system. (3) the formation of the vibration of the main bearing and the parameters to measure the vibration degree are studied. The contact model of roller raceway is used to establish a system dynamic model matching fatigue reliability. Based on the analysis and study of the key parameters of system dynamics, the equivalent dynamic model and equation based on the contact stiffness and damping of roller raceway are established. (4) the fatigue reliability and vibration degree of the main bearing are taken as the objectives. The overall design requirement of the system is constrained, and the structural parameters optimization model of the main bearing is established. In order to verify the system of the theory and method in this paper, a water diversion project is taken as an example. The optimization results show that the volume is not increased. The fatigue reliability and vibration degree of the main bearing after optimization are obviously improved, which provides a practical reference for the optimization of the system structural parameters.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:U455.31;TH133.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳於學(xué);王冠兵;楊曙年;;圓柱滾子軸承的動(dòng)態(tài)剛度分析[J];軸承;2007年04期
2 吳昊;王建文;安琦;;圓柱滾子軸承阻尼的計(jì)算方法[J];軸承;2008年09期
3 張亮;趙娜;;用MATLAB實(shí)現(xiàn)JC法計(jì)算結(jié)構(gòu)可靠度程序[J];電腦知識(shí)與技術(shù);2009年29期
4 王進(jìn)才;王軍虎;;布爾函數(shù)與圖論結(jié)合在系統(tǒng)可靠性分析中的應(yīng)用[J];電子產(chǎn)品可靠性與環(huán)境試驗(yàn);2005年06期
5 于運(yùn)治;;具有相關(guān)元件的串聯(lián)系統(tǒng)的可靠度研究[J];電子質(zhì)量;2009年04期
6 魏偉;于國(guó)紅;;疲勞設(shè)計(jì)方法簡(jiǎn)介[J];化學(xué)工程與裝備;2009年12期
7 陸國(guó)賢;丁怡;倪慶興;;三列滾柱式回轉(zhuǎn)支承結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì)[J];工程機(jī)械;1982年04期
8 陶運(yùn)正;;回轉(zhuǎn)支承圈體變形規(guī)律研究[J];工程機(jī)械;2011年08期
9 陳光,肖漢斌,雷新華,張燕龍,胡立杰;振動(dòng)對(duì)起重機(jī)回轉(zhuǎn)支承部件強(qiáng)度的影響分析[J];港口裝卸;2003年06期
10 李文富;伊長(zhǎng)友;狄鑫卓;;大伙房水庫(kù)輸水工程TBM施工管理方法[J];華北水利水電學(xué)院學(xué)報(bào);2011年04期
相關(guān)博士學(xué)位論文 前4條
1 賀向東;機(jī)械結(jié)構(gòu)可靠性穩(wěn)健設(shè)計(jì)若干關(guān)鍵問(wèn)題的研究[D];吉林大學(xué);2005年
2 陳於學(xué);基于接觸力學(xué)的圓柱滾子軸承振動(dòng)研究[D];華中科技大學(xué);2005年
3 李鋒;不確定參數(shù)下結(jié)構(gòu)疲勞斷裂可靠性若干問(wèn)題的研究[D];吉林大學(xué);2008年
4 王正;零部件與系統(tǒng)動(dòng)態(tài)可靠性建模理論與方法[D];東北大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 林杰煌;液壓打樁機(jī)回轉(zhuǎn)支承裝置的動(dòng)態(tài)性能研究與優(yōu)化設(shè)計(jì)[D];湘潭大學(xué);2010年
2 劉雪霞;回轉(zhuǎn)支承承載性能分析方法研究[D];大連理工大學(xué);2011年
3 陳亮;基于動(dòng)力學(xué)的土壓平衡盾構(gòu)減速器齒輪傳動(dòng)系統(tǒng)可靠性評(píng)估及參數(shù)優(yōu)化設(shè)計(jì)[D];重慶大學(xué);2011年
4 衣凰;礦用挖掘機(jī)回轉(zhuǎn)支承的動(dòng)力學(xué)特性仿真研究[D];吉林大學(xué);2007年
5 張秋艷;裝載機(jī)疲勞可靠性分析[D];吉林大學(xué);2009年
6 曾曉星;異質(zhì)巖土工況下土壓平衡盾構(gòu)載荷等效及傳遞特性研究[D];上海交通大學(xué);2009年
7 張偉;全斷面巖石隧道掘進(jìn)機(jī)刀盤(pán)刀具布置方法研究[D];大連理工大學(xué);2009年
8 張鵬;TBM滾刀布置與刀盤(pán)結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì)研究[D];大連理工大學(xué);2009年
9 陳沛;盾構(gòu)機(jī)刀盤(pán)驅(qū)動(dòng)大軸承設(shè)計(jì)研究[D];西南交通大學(xué);2010年
10 孫偉;高爐布料器回轉(zhuǎn)支承動(dòng)力學(xué)仿真及有限元接觸分析[D];重慶大學(xué);2010年
,本文編號(hào):2149532
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/jixiegongcheng/2149532.html