速凍隧道流場(chǎng)模擬及隧道的優(yōu)化設(shè)計(jì)
[Abstract]:Since 1980 s, the frozen food industry in China has developed rapidly, and the variety and quantity are increasing day by day. When frozen food is cooled in the cooling tunnel, it is greatly affected by wind speed and air volume. Unreasonable setting will lead to moisture drying, sublimation, skin rupture and other defects on the surface of frozen food. The cooling tunnel structure affects the uniformity of flow field. Reasonable tunnel structure can reduce the temperature difference between the inner and outer sides of the conveyor belt, improve the cooling efficiency and reduce the energy consumption. The numerical simulation of cooling tunnel can predict the cooling effect of food, optimize the technological conditions such as wind speed and air volume, the position of fan, the size of baffle plate and so on, so as to save the operation cost and improve the quality of frozen products. In this paper, FLUENT software is used to simulate the cooling tunnel of a quick freezing device, and the variation of velocity field and temperature field with air supply velocity in cooling tunnel is analyzed, and the optimum air supply speed is determined according to the change of temperature difference. Under the condition of reasonable air supply speed, the baffle plate is added to further simulate and analyze the effect of cooling tunnel structure on the improvement of cooling efficiency. Through the research in this paper, it is found that: (1) when the air supply speed is increased from 12m/s to 13 m / s, the region range of the lower velocity in the velocity field decreases and the uniformity of the velocity field is improved when the air supply speed is increased from 13 m / s to 13 m / s; When the air supply speed increases from 14m/s to 15m/s, the distribution of velocity field does not change obviously. (2) when the air supply speed increases from 12m/s to 13 m, 14 m / s, 15 m / s, the maximum temperature in the temperature field decreases. The range of low temperature region is expanded, and the uniformity of temperature field is also improved. (3) on the basis of considering the principle of full utilization of cooling capacity and energy saving, the comprehensive analysis of velocity field and temperature field can be obtained. When the air supply speed of the chiller is 14m/s, it is more reasonable. (4) under the premise that the air supply speed is 14m/s, the range of the lower velocity in the velocity field is reduced when the baffle is added; The range of temperature field in the low temperature region decreases, and the temperature difference between the upper and outer sides of the conveyor belt decreases. The results show that the air supply speed of cooling tunnel is better than that of 14m/s, and the distribution uniformity of air flow field and temperature field can be further improved by adding baffle plate.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TS205
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 袁東升;任曉利;陳小磚;;辦公室空調(diào)房間不同送風(fēng)速度的數(shù)值模擬[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期
2 王曉彤,陳俊俊,武文斐,許衛(wèi)民;送風(fēng)速度對(duì)多熱源置換通風(fēng)影響的數(shù)值模擬[J];環(huán)境科學(xué)與技術(shù);2005年03期
3 王強(qiáng);陳煥新;董德發(fā);;黃金梨差壓預(yù)冷送風(fēng)速度的選擇[J];制冷學(xué)報(bào);2008年04期
4 劉何清,李孔清;側(cè)送風(fēng)氣流分布的優(yōu)化計(jì)算法[J];湘潭礦業(yè)學(xué)院學(xué)報(bào);1998年02期
5 王海樺;劉娣;湯廣發(fā);;復(fù)合空調(diào)室內(nèi)氣態(tài)污染物對(duì)流輸運(yùn)模擬[J];暖通空調(diào);2009年07期
6 張洪良;孫付偉;王發(fā)輝;;基于FLUENT的手術(shù)室流場(chǎng)分析研究[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
相關(guān)會(huì)議論文 前3條
1 邱少輝;李安桂;王國棟;;一種新型通風(fēng)方式——條縫型送風(fēng)口形成的豎壁貼附射流通風(fēng)模式研究:送風(fēng)速度的影響[A];2008鐵路暖通空調(diào)學(xué)術(shù)年會(huì)論文集[C];2008年
2 叢曉春;張旭;;送風(fēng)參數(shù)對(duì)車廂內(nèi)溫度影響的試驗(yàn)研究[A];全國暖通空調(diào)制冷2004年學(xué)術(shù)文集[C];2004年
3 厲美飛;何天祺;劉鵬;;空氣分布特性實(shí)驗(yàn)項(xiàng)目的設(shè)計(jì)與分析[A];2005西南地區(qū)暖通空調(diào)熱能動(dòng)力年會(huì)論文集[C];2005年
相關(guān)博士學(xué)位論文 前2條
1 凌繼紅;手術(shù)室空氣凈化效果的研究[D];天津大學(xué);2005年
2 張登春;旅客列車車廂內(nèi)氣流分布特征與環(huán)境舒適性研究[D];上海大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 祁艷會(huì);速凍隧道流場(chǎng)模擬及隧道的優(yōu)化設(shè)計(jì)[D];鄭州大學(xué);2017年
2 方楠;高溫工業(yè)廠房中工位空調(diào)作用下的工位區(qū)流場(chǎng)特性研究[D];西安建筑科技大學(xué);2015年
3 夏可超;飛機(jī)飛行初始階段噴嘴送風(fēng)速度對(duì)人體熱舒適的影響[D];重慶大學(xué);2015年
4 李寧;高大廠房熱風(fēng)供暖數(shù)值模擬研究[D];石家莊鐵道大學(xué);2016年
5 馬賾緯;ADPV方式作用下的人體微環(huán)境流場(chǎng)特性研究[D];西安建筑科技大學(xué);2016年
6 房玉恒;冷風(fēng)侵入對(duì)熱風(fēng)供暖房間室內(nèi)環(huán)境影響的實(shí)測(cè)研究[D];東華大學(xué);2016年
7 梁小貝;飛機(jī)客艙空氣舒適度數(shù)值模擬研究[D];中國民航大學(xué);2016年
8 薄士強(qiáng);商業(yè)廚房通風(fēng)、空調(diào)及熱環(huán)境模擬研究[D];沈陽建筑大學(xué);2015年
9 王安冉;基于CFD的冷藏車內(nèi)流場(chǎng)及溫度場(chǎng)的數(shù)值研究[D];山東大學(xué);2017年
10 雷彬;上送下回送風(fēng)方式室內(nèi)空氣流動(dòng)的2DPIV實(shí)驗(yàn)研究[D];西安建筑科技大學(xué);2009年
,本文編號(hào):2493901
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/boshibiyelunwen/2493901.html