超低溫奧氏體球墨鑄鐵微觀組織與低溫沖擊斷裂行為的研究
[Abstract]:In recent years, more and more industrial equipments have been used under extremely low temperature conditions. For example, the working temperature of large-scale ultra-low temperature BOG compressor is generally - 160 C or even lower, so there is a great demand for ultra-low temperature casting materials. The high-nickel Austenitic Ductile iron has good mechanical properties at low temperature, so it has a broad application prospect in the field of ultra-low temperature (-100) industrial manufacturing. At present, the research on high-nickel Austenitic Ductile iron is mainly focused on. In the aspect of high temperature properties, there is little research on the microstructure, impact fracture characteristics, oscillographic impact fracture process and the law of initiation and metastable propagation of impact cracks of ultra-low temperature Austenitic Ductile iron. The microstructure and friction and wear behavior of ultra-low temperature Austenitic Ductile iron are studied. The results show that the microstructure of ultra-low temperature Austenitic Ductile iron is mainly composed of austenite, graphite nodules and carbides distributed at grain boundaries. Manganese and chromium elements in the material will segregate and distribute to austenite grain boundaries to form M. The micro-hardness of 23C6 (M=Fe, Mn, Cr) carbide can reach 1200HV, which is much higher than that of austenite matrix, so the macro-hardness of the material can be improved. The carbide forming ability of chromium element is stronger than that of manganese element, which has greater influence on the friction and wear properties of the material. The wear morphology analysis showed that the material exhibited abrasive wear mechanism, in which the grain boundary carbide promoted by chromium element was used as hard particles to improve the friction and wear properties of the material. The results show that the impact properties of ultra-low temperature Austenitic Ductile Iron with different alloying elements have similar characteristics as the temperature decreases, that is, the impact properties of ultra-low temperature Austenitic Ductile Iron increase first and then decrease, and the change of nickel content has a positive correlation with the impact properties at low temperature, while excessive manganese and chromium elements have a positive correlation. Scanning electron microscopy (SEM) was used to analyze the impact fracture morphology. It was found that the ductile fracture morphology with graphite sphere or graphite sphere pit as the dimple center was observed in the temperature range from room temperature to - 193 C. The number of graphite spheres and impact properties of the impact fracture surface were also observed. There is a direct causal relationship, that is, the more graphite spheres, the better the impact performance; the change of carbide number at room temperature has no obvious impact on the impact performance of the material, but with the decrease of temperature its impact shows an increasing trend, in the ultra-low temperature of - 193 C conditions will lead to the occurrence of longitudinal microcracks in the impact fracture, seriously destroying the impact of materials. On the basis of the study on the low temperature impact property of ultra-low temperature Austenitic Ductile iron, the oscillographic impact curves at different temperatures are analyzed in depth, and the impact fracture process of the material is further revealed. The results show that the oscillographic impact curves are segmented by slope method and flexibility change rate method. The analytical method can be used to quantitatively describe the low temperature impact fracture process of materials, in which the proportion of metastable propagation energy under high load can reach more than 60% of the total impact energy, and the change trend of the two is consistent, that is, the metastable propagation energy under high load increases first and then decreases with the decrease of temperature. The main factor determining the low temperature impact property is that the low temperature impact property of the material first increases and then decreases (the maximum value is at - 80 C), because the average load of the high load metastable extension plays a leading role in the low temperature impact property from room temperature to - 80 C, and the high load metastable property when the temperature continues to decrease. At the same time, the geometric morphology of impact fracture was quantitatively analyzed by using three-dimensional laser confocal microscopy, and the surface roughness index of metastable extended section with high load at different temperatures was calculated to verify the above results. The results show that the energy absorbed in the metastable growth stage of high load in the oscillographic shock curve of ultra-low temperature Austenitic Ductile Iron corresponds to the energy absorbed in the process of crack initiation and metastable growth. Therefore, the process of impact crack initiation and metastable growth is further studied. The results show that with the decrease of temperature, the energy absorbed in the metastable growth stage corresponds to the energy absorbed in the process of impact crack initiation and meta Low-temperature Austenitic Ductile iron has better resistance to impact crack initiation; the resistance to metastable propagation of impact crack in early stage is affected by temperature, while in later stage is affected by both temperature and nickel content in the material; graphite spheres in the matrix (especially adjacent graphite spheres) and carbonization at grain boundary Material is the most important factor affecting the metastable propagation path of impact crack, and the brittle fracture tendency is aggravated by the decrease of temperature and the increase of carbide content in the material. It is found that the ductile fracture toughness of the material increases continuously with the decrease of temperature under dynamic loading, and the trend slows down obviously when the temperature is below - 80%.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TG143.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尹朝曦;;如何選用奧氏體鋼爐管[J];石油化工設(shè)備技術(shù);1991年02期
2 長征;適合作人體植入物用的無鎳奧氏體鋼[J];金屬功能材料;2001年06期
3 長征;適合作人體植入物用的無鎳奧氏體鋼[J];金屬功能材料;2002年01期
4 戴起勛,程曉農(nóng),趙玉濤,袁志鐘;工程應(yīng)用層次的奧氏體鋼計(jì)算設(shè)計(jì)系統(tǒng)[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
5 王建泳;;奧氏體鋼應(yīng)變誘發(fā)馬氏體的試驗(yàn)研究[J];鍋爐技術(shù);2013年03期
6 薛侃時(shí);;高強(qiáng)度超低溫奧氏體鋼的發(fā)展[J];上海金屬(鋼鐵分冊);1988年04期
7 G.G.Bondarenko;I.N.Borodulin;曹冬根;;改善奧氏體鋼耐熱性的化學(xué)處理方法[J];國外金屬熱處理;1988年02期
8 戴起勛,火樹鵬,陳原野;奧氏體鋼的形變誘發(fā)組織特征[J];江蘇工學(xué)院學(xué)報(bào);1993年04期
9 李曉剛;陳華;姚治銘;李勁;柯偉;;304奧氏體鋼的高溫高壓氫腐蝕[J];金屬學(xué)報(bào);1993年04期
10 В.Г.ΓОРБАЧ;謝揆燮;;制造儀表裝備和零件用馬氏體-奧氏體鋼[J];鑄鍛熱;1993年03期
相關(guān)會議論文 前5條
1 馬玉喜;榮凡;周榮;朗宇平;蔣業(yè)華;;高氮奧氏體鋼的韌脆轉(zhuǎn)變研究[A];2007中國鋼鐵年會論文集[C];2007年
2 范榮團(tuán);黃勝;郭桂英;;高錳奧氏體鋼中錳在晶界和晶內(nèi)的非平衡偏析[A];海峽兩岸電子顯微學(xué)研討會論文專集[C];1992年
3 劉國剛;;奧氏體爐管的壽命評價(jià)新技術(shù)及其應(yīng)用[A];全國火電大機(jī)組(300MW級)競賽第34屆年會論文集[C];2005年
4 任大鵬;王小英;陳世勛;姜桂芬;;21-6-9奧氏體鋼與氘、氚氣體長期作用后顯微組織[A];中國工程物理研究院科技年報(bào)(2000)[C];2000年
5 馬玉喜;;高氮奧氏體鋼的韌脆轉(zhuǎn)變與層錯(cuò)能之間的關(guān)系研究[A];2009年全國熱軋板帶生產(chǎn)技術(shù)交流會論文集[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 Motomichi KOYAMA Takahiro SAWAGUCHI 張濤 譯;日本研究奧氏體鋼的TWIP效應(yīng)[N];中國冶金報(bào);2013年
相關(guān)博士學(xué)位論文 前7條
1 張榮華;護(hù)環(huán)用改進(jìn)型超高氮奧氏體鋼的鑄態(tài)組織及熱變形行為[D];燕山大學(xué);2015年
2 王曼;新型奧氏體鋼顯微組織結(jié)構(gòu)穩(wěn)定性及力學(xué)性能的研究[D];北京科技大學(xué);2017年
3 姜珂;超低溫奧氏體球墨鑄鐵微觀組織與低溫沖擊斷裂行為的研究[D];沈陽工業(yè)大學(xué);2017年
4 付瑞東;高錳奧氏體鋼低溫沿晶脆性的產(chǎn)生原因及抑制方法的研究[D];燕山大學(xué);2003年
5 姜雯;超級馬氏體不銹鋼組織性能及逆變奧氏體機(jī)制的研究[D];昆明理工大學(xué);2014年
6 婁建新;珠光體鋼與奧氏體鋼異質(zhì)接頭碳遷移機(jī)制及影響因素研究[D];沈陽工業(yè)大學(xué);2014年
7 蔣志俊;過冷高氮奧氏體中溫回火分解機(jī)制的研究[D];上海交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王崗;高比強(qiáng)鐵錳基奧氏體鋼設(shè)計(jì)基礎(chǔ)研究[D];大連交通大學(xué);2015年
2 方曉陽;加工工藝對奧氏體先進(jìn)高強(qiáng)鋼組織與力學(xué)性能的影響[D];浙江大學(xué);2016年
3 徐天帥;軋制及熱處理工藝對Fe-7Mn鋼的顯微結(jié)構(gòu)與拉伸性能的影響[D];東北大學(xué);2014年
4 任善平;三種奧氏體鋼在模擬氣氛/煤灰環(huán)境中的腐蝕行為研究[D];南昌航空大學(xué);2016年
5 胡昌文;珠光體鋼和奧氏體鋼焊接工藝優(yōu)化及其接頭性能研究[D];河南科技大學(xué);2016年
6 匡步肖;奧氏體含量及其機(jī)械穩(wěn)定性對Fe-15Cr-1Mo-0.4N-0.3C不銹鋼拉伸性能的影響[D];武漢科技大學(xué);2016年
7 康杰;碳氮增強(qiáng)合金化奧氏體鋼及其力學(xué)行為的研究[D];燕山大學(xué);2012年
8 李曉英;奧氏體變形對低碳高硅鋼等溫貝氏體組織的影響[D];燕山大學(xué);2013年
9 賀延明;奧氏體鋼冷軋及退火后的組織與性能研究[D];燕山大學(xué);2014年
10 常帥;高錳奧氏體鋼中碳化釩沉淀機(jī)制與強(qiáng)化機(jī)理的研究[D];大連交通大學(xué);2013年
,本文編號:2181280
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/gckjbs/2181280.html