基于ZigBee技術(shù)的無(wú)線振動(dòng)監(jiān)測(cè)系統(tǒng)研制
本文選題:無(wú)線振動(dòng)監(jiān)測(cè)系統(tǒng) 切入點(diǎn):ZigBee 出處:《青島科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在現(xiàn)代化工業(yè)生產(chǎn)過(guò)程中,大型旋轉(zhuǎn)機(jī)電設(shè)備的使用遍布于各行各業(yè)中,因此對(duì)于機(jī)電設(shè)備的的故障診斷也十分普遍。通過(guò)對(duì)生產(chǎn)過(guò)程中各類機(jī)電設(shè)備的狀態(tài)監(jiān)測(cè)可以及時(shí)甚至預(yù)先勘測(cè)到設(shè)備的一系列故障問(wèn)題。做到提前預(yù)警、提前檢修,有效避免因設(shè)備故障導(dǎo)致的生產(chǎn)停線以及某些意外事故的發(fā)生。機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)是一種綜合了多門學(xué)科的實(shí)用技術(shù),它不僅需要充分分析各類設(shè)備在產(chǎn)生不同故障時(shí)所表現(xiàn)出的特有機(jī)械參數(shù),還需要通過(guò)一定的檢測(cè)指標(biāo)與方法提取相應(yīng)故障參數(shù)特征。為實(shí)現(xiàn)機(jī)械故障相關(guān)參數(shù)的分析任務(wù),必須設(shè)計(jì)相應(yīng)的硬件檢測(cè)裝置并對(duì)合適的數(shù)字信號(hào)處理算法對(duì)其做進(jìn)一步處理。某些機(jī)械設(shè)備的運(yùn)行環(huán)境中,可能存在高溫高熱,空間結(jié)構(gòu)復(fù)雜等因素,因此造成在安裝數(shù)據(jù)采集設(shè)備時(shí)往往會(huì)面對(duì)布線困難,實(shí)現(xiàn)成本偏高等問(wèn)題。另外一個(gè)不容回避的問(wèn)題就是,一般監(jiān)測(cè)裝置往往采用有線方式進(jìn)行裝置間的數(shù)據(jù)傳輸,為了避免現(xiàn)場(chǎng)電磁環(huán)境對(duì)于數(shù)據(jù)采集以及數(shù)據(jù)傳輸過(guò)程中造成的信號(hào)干擾,一般的解決辦法是選擇高性能的電子元件并開發(fā)復(fù)雜的電路結(jié)構(gòu)來(lái)消除信號(hào)中的干擾噪聲與預(yù)防通信過(guò)程中的丟包、粘包等常見(jiàn)問(wèn)題。本文從兩個(gè)角度開展對(duì)于如何降低故障診斷系統(tǒng)實(shí)現(xiàn)成本這一課題的可行性研究:首先,將傳統(tǒng)的有線通信網(wǎng)絡(luò)轉(zhuǎn)換為基于ZigBee技術(shù)的無(wú)線網(wǎng)絡(luò),使得布置傳感器網(wǎng)絡(luò)的復(fù)雜度得以降低;其次在解決信號(hào)降噪與相關(guān)算法實(shí)現(xiàn)上面,盡量利用軟件算法來(lái)代替硬件電路。文中分別使用編軟件程方式實(shí)現(xiàn)了小波變換濾波、Hilbert變換求取包絡(luò)線以及快速傅里葉變換等。經(jīng)過(guò)以上算法處理的信號(hào)可以更加精準(zhǔn)的為故障診斷工程師提供待監(jiān)測(cè)設(shè)備的運(yùn)行參數(shù),本文也介紹了如何將系統(tǒng)中的上位機(jī)處理軟件移植到了嵌入式操作系統(tǒng)中,以增強(qiáng)本系統(tǒng)的擴(kuò)展性。本文最終將傳感器采集結(jié)點(diǎn)、網(wǎng)關(guān)節(jié)點(diǎn)以及上位機(jī)監(jiān)控軟件結(jié)合成為一套完整的無(wú)線振動(dòng)監(jiān)測(cè)系統(tǒng)并在實(shí)驗(yàn)室環(huán)境中對(duì)其進(jìn)行了相應(yīng)的性能測(cè)試。
[Abstract]:In the process of modern industrial production, large rotating electromechanical equipment is used all over the world. Therefore, the fault diagnosis of electromechanical equipment is also very common. By monitoring the condition of all kinds of electromechanical equipment in production process, a series of trouble problems can be detected in time or even in advance. The technology of mechanical equipment condition monitoring and fault diagnosis is a kind of practical technology which synthesizes many disciplines. It not only needs to fully analyze the special mechanical parameters of all kinds of equipment when they produce different faults, but also needs to extract the corresponding fault parameter characteristics through certain detection indexes and methods, in order to realize the analysis task of mechanical fault related parameters. It is necessary to design the corresponding hardware detection device and further deal with the appropriate digital signal processing algorithm. In the operating environment of some mechanical equipment, there may be some factors, such as high temperature and high heat, complex space structure, etc. Therefore, when installing data acquisition equipment, it is often faced with problems such as difficult wiring and high cost. Another unavoidable problem is that general monitoring devices often use wired methods to transmit data between devices. In order to avoid the signal interference caused by the field electromagnetic environment in the process of data acquisition and data transmission, The general solution is to select high-performance electronic components and develop complex circuit structures to eliminate interference noise in the signal and prevent packet loss during communication. In this paper, the feasibility study of how to reduce the cost of fault diagnosis system is carried out from two angles. Firstly, the traditional wired communication network is transformed into a wireless network based on ZigBee technology. The complexity of the sensor network is reduced. Secondly, the signal de-noising and related algorithms are implemented. The software algorithm is used to replace the hardware circuit as far as possible. In this paper, the wavelet transform filter Hilbert transform is used to obtain the envelope and the fast Fourier transform respectively. The signal processed by the above algorithm can be better. To provide the fault diagnosis engineer with the operating parameters of the equipment to be monitored, This paper also introduces how to transplant the host computer processing software to the embedded operating system to enhance the expansibility of the system. The gateway node and the host computer monitoring software are combined into a complete wireless vibration monitoring system and the corresponding performance tests are carried out in the laboratory environment.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP274;TN92
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊建中,楊培,周根來(lái);旋轉(zhuǎn)機(jī)械轉(zhuǎn)子振動(dòng)監(jiān)測(cè)系統(tǒng)的檢驗(yàn)及安裝[J];煉油設(shè)計(jì);2000年05期
2 楊敏;馬光輝;吳乃軍;;大功率高速泵的振動(dòng)監(jiān)測(cè)系統(tǒng)及其應(yīng)用[J];火箭推進(jìn);2013年01期
3 楊開九;;在線振動(dòng)監(jiān)測(cè)系統(tǒng)在大型設(shè)備故障預(yù)防及診斷中的應(yīng)用[J];中國(guó)科技信息;2013年14期
4 盛迎新;周繼威;;風(fēng)電機(jī)組在線振動(dòng)監(jiān)測(cè)系統(tǒng)及現(xiàn)場(chǎng)應(yīng)用[J];振動(dòng).測(cè)試與診斷;2010年06期
5 敬明永;;振動(dòng)監(jiān)測(cè)系統(tǒng)在旋轉(zhuǎn)機(jī)械上的應(yīng)用研究[J];中國(guó)新技術(shù)新產(chǎn)品;2012年05期
6 黃燕;一種振動(dòng)監(jiān)測(cè)系統(tǒng)的應(yīng)用[J];電子儀器儀表用戶;2000年01期
7 付冬妮,王友釗;旋轉(zhuǎn)機(jī)械在線振動(dòng)監(jiān)測(cè)系統(tǒng)的研究[J];機(jī)床與液壓;2005年01期
8 馬文科;鐘小倩;;基于嵌入式振動(dòng)監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與研究[J];萍鄉(xiāng)高等?茖W(xué)校學(xué)報(bào);2013年06期
9 李嬈;六通道振動(dòng)監(jiān)測(cè)系統(tǒng)[J];儀表技術(shù)與傳感器;2001年08期
10 羅仁澤;付元華;代云中;曹鵬;趙新;劉紅軍;孫熙諾;;基于單片機(jī)的旋轉(zhuǎn)機(jī)械振動(dòng)監(jiān)測(cè)系統(tǒng)[J];計(jì)算機(jī)測(cè)量與控制;2013年12期
相關(guān)會(huì)議論文 前1條
1 呂麗娟;王瑩;;基于無(wú)線網(wǎng)絡(luò)的振動(dòng)監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[A];中國(guó)航海學(xué)會(huì)通信導(dǎo)航專業(yè)委員會(huì)2006年學(xué)術(shù)年會(huì)論文集[C];2006年
相關(guān)碩士學(xué)位論文 前10條
1 車駿;基于無(wú)線傳感器網(wǎng)絡(luò)的振動(dòng)監(jiān)測(cè)系統(tǒng)[D];西安電子科技大學(xué);2015年
2 張冬平;風(fēng)電機(jī)組在線振動(dòng)監(jiān)測(cè)系統(tǒng)開發(fā)與應(yīng)用[D];華北電力大學(xué)(北京);2016年
3 盧平光;基于ZigBee技術(shù)的無(wú)線振動(dòng)監(jiān)測(cè)系統(tǒng)研制[D];青島科技大學(xué);2017年
4 王斌;分布式實(shí)時(shí)振動(dòng)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D];西安理工大學(xué);2008年
5 楊棟;高速鐵路軌道振動(dòng)監(jiān)測(cè)系統(tǒng)的研究與實(shí)現(xiàn)[D];蘭州交通大學(xué);2012年
6 郭丹楓;基于DSP的汽輪機(jī)轉(zhuǎn)子振動(dòng)監(jiān)測(cè)系統(tǒng)研究[D];哈爾濱理工大學(xué);2007年
7 李大慶;旋轉(zhuǎn)機(jī)械振動(dòng)監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)[D];北京工業(yè)大學(xué);2006年
8 張仕龍;基于FPGA的管式分離機(jī)振動(dòng)監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)[D];南京林業(yè)大學(xué);2009年
9 沈玉強(qiáng);基于CAN總線設(shè)備振動(dòng)監(jiān)測(cè)系統(tǒng)研究[D];華北電力大學(xué)(北京);2008年
10 杜可兵;基于無(wú)線傳感器網(wǎng)絡(luò)的振動(dòng)監(jiān)測(cè)系統(tǒng)[D];華北電力大學(xué)(北京);2011年
,本文編號(hào):1610698
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xixikjs/1610698.html