無人機(jī)自組網(wǎng)路由協(xié)議研究
本文選題:無人機(jī)自組網(wǎng) 切入點(diǎn):位置預(yù)測 出處:《沈陽工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:自組網(wǎng)作為無人機(jī)智能化、集群化、網(wǎng)絡(luò)化的重要發(fā)展方向,已成為信息化時(shí)代新興的無人機(jī)群應(yīng)用模式。無人機(jī)自組網(wǎng)路由協(xié)議為無人機(jī)自組網(wǎng)內(nèi)部數(shù)據(jù)的傳輸尋找、建立、維護(hù)路徑并提供路徑?jīng)Q策,是機(jī)群協(xié)調(diào)完成各項(xiàng)任務(wù)的基礎(chǔ),在相當(dāng)程度上影響著無人機(jī)自組網(wǎng)的性能。隨著定位技術(shù)如GPS和北斗導(dǎo)航的飛速發(fā)展及終端設(shè)備的普及,無人機(jī)可以通過機(jī)載定位設(shè)備快速的獲取自身地理位置信息;基于地理位置信息的路由協(xié)議簡單高效,在無人機(jī)自組網(wǎng)中擁有廣闊的應(yīng)用前景。本文根據(jù)無人機(jī)自組網(wǎng)的特點(diǎn)和需求,主要工作如下:研究了無人機(jī)自組網(wǎng)和路由協(xié)議,重點(diǎn)研究了經(jīng)典的路由協(xié)議GPSR,包括原理、優(yōu)劣勢和適用范圍。針對無人機(jī)自組網(wǎng)內(nèi)部成員的高速運(yùn)動和部署密度低等特點(diǎn),在研究無人機(jī)運(yùn)動模型后提出一種基于移動預(yù)測的稀疏性地理路由協(xié)議GPSR-NMP,將無人機(jī)節(jié)點(diǎn)運(yùn)動情況考慮進(jìn)去進(jìn)行位置預(yù)測;重構(gòu)信標(biāo),以使其能夠反映網(wǎng)絡(luò)稠密程度,為稀疏性篩選鄰節(jié)點(diǎn)和運(yùn)動性篩選鄰節(jié)點(diǎn)提供決策依據(jù),以使維護(hù)的鄰居表更加逼近于真實(shí)的無人機(jī)節(jié)點(diǎn)物理空間分布情況,使路由決策更加可靠;提出回退機(jī)制和避環(huán)機(jī)制應(yīng)對網(wǎng)絡(luò)拓?fù)鋭×易兓?提高GPSR-NMP協(xié)議在無人機(jī)自組網(wǎng)中的穩(wěn)定性和可靠性。以數(shù)據(jù)投遞成功率、平均端到端時(shí)延和平均吞吐量為主要指標(biāo),在NS2.35網(wǎng)絡(luò)仿真平臺上對多種路由協(xié)議進(jìn)行仿真并統(tǒng)計(jì)分析,仿真結(jié)果表明,相較于選定為參照的路由協(xié)議GPSR與GPSRI,本文提出的GPSR-NMP協(xié)議能夠有效的提高無人機(jī)自組網(wǎng)的投遞成功率、吞吐量,降低平均端到端時(shí)延,能夠較好地適用于低節(jié)點(diǎn)密度和高運(yùn)動性的無人機(jī)自組網(wǎng)。
[Abstract]:As an important developing direction of UAV intelligence, clustering and networking, Ad Hoc Network (Manet) has become a new application mode of UAV swarm in the information age. The Ad Hoc Network routing Protocol (Manet) of UAV (Ad Hoc Network) is used to search and establish the internal data transmission of UAV Ad Hoc Network (UAV). Maintaining the path and providing path decision are the basis for the cluster to coordinate the completion of various tasks, and to a certain extent affect the performance of the UAV ad hoc network. With the rapid development of positioning technology such as GPS and Beidou navigation and the popularization of terminal equipment, UAV can quickly acquire its own geographical location information by airborne positioning equipment, and the routing protocol based on geographical location information is simple and efficient. According to the characteristics and requirements of UAV ad hoc network, the main work of this paper is as follows: the research of UAV ad hoc network and routing protocol, focusing on the classical routing protocol GPSRs, including the principle, In view of the characteristics of high speed movement and low deployment density of the members of the Unmanned aerial vehicle (UAV) ad hoc network, After studying the UAV motion model, a sparse geographic routing protocol GPSR-NMPbased on mobile prediction is proposed, which takes the motion of UAV nodes into account and reconstructs the beacon to reflect the density of the network. It provides a decision basis for sparse selection of neighbor nodes and kinematic selection of neighbor nodes in order to make the maintained neighbor table more close to the real physical spatial distribution of UAV nodes and make the routing decision more reliable. In order to improve the stability and reliability of GPSR-NMP protocol in UAV Ad Hoc network, the backstepping mechanism and loop avoidance mechanism are proposed to cope with the drastic changes in network topology. The main indicators are the success rate of data delivery, the average end-to-end delay and the average throughput. Various routing protocols are simulated and analyzed on the NS2.35 network simulation platform. The simulation results show that compared with the routing protocols GPSR and GPSRI, the proposed GPSR-NMP protocol can effectively improve the delivery success rate of UAV Ad Hoc network. Throughput and average end-to-end delay can be well applied to low node density and high mobility UAV ad hoc networks.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V279;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳振華;胡鵬;;VANET中路由協(xié)議分析[J];通信學(xué)報(bào);2015年S1期
2 卓琨;張衡陽;鄭博;戚云軍;;無人機(jī)自組網(wǎng)研究進(jìn)展綜述[J];電信科學(xué);2015年04期
3 張翼麟;張紹芳;李鵬飛;;2012年世界軍用無人機(jī)發(fā)展動向及評述[J];飛航導(dǎo)彈;2013年07期
4 張濤;蘆維寧;李一鵬;;智能無人機(jī)綜述[J];航空制造技術(shù);2013年12期
5 賀成龍;陳榮;田亮;王新明;;單兵小型無人機(jī)偵察系統(tǒng)發(fā)展與分析[J];飛航導(dǎo)彈;2013年01期
6 吳晶;吳怡;;基于位置矢量的GPSR改進(jìn)協(xié)議[J];計(jì)算機(jī)應(yīng)用;2012年S2期
7 王麗娟;梁海濤;秦建敏;任新華;;貪婪周邊無狀態(tài)路由轉(zhuǎn)發(fā)算法GPSR的分析及改進(jìn)[J];太原理工大學(xué)學(xué)報(bào);2012年05期
8 董德尊;廖湘科;沈昌祥;;無線傳感器網(wǎng)絡(luò)基于連通性的平面化算法[J];計(jì)算機(jī)工程與科學(xué);2012年03期
9 王東;張廣政;穆武第;;多無人機(jī)協(xié)同作戰(zhàn)通信自組網(wǎng)技術(shù)[J];飛航導(dǎo)彈;2012年01期
10 徐志明;朱精果;;無人機(jī)自組網(wǎng)絡(luò)通信體系結(jié)構(gòu)系統(tǒng)設(shè)計(jì)[J];高技術(shù)通訊;2010年06期
,本文編號:1639802
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xixikjs/1639802.html