高精度光學(xué)頻率合成技術(shù)研究
發(fā)布時(shí)間:2018-07-05 00:12
本文選題:光學(xué)頻率合成 + 光學(xué)頻率梳; 參考:《華東師范大學(xué)》2017年博士論文
【摘要】:光原子鐘的頻率不穩(wěn)定度和不確定度都已達(dá)到1 0-18量級(jí),它們?cè)谠诨疚锢沓?shù)測(cè)量、深空導(dǎo)航、測(cè)地學(xué)等領(lǐng)域具有重要的應(yīng)用。而這些應(yīng)用均要求將光原子鐘在某一特定光學(xué)波段的輸出信號(hào)轉(zhuǎn)換到其他光學(xué)波段或微波波段,從而進(jìn)行精密測(cè)量和比對(duì)研究,還要求在轉(zhuǎn)換過(guò)程中不能破壞光原子鐘高頻率穩(wěn)定度、高頻率精度的優(yōu)異性能。因此高精度光學(xué)頻率合成技術(shù)的研究意義重大。由于光學(xué)波段信號(hào)的頻率值在1014 Hz量級(jí),遠(yuǎn)大于電子元件的響應(yīng)范圍,所以現(xiàn)有的基于電子技術(shù)的微波頻率合成方法很難直接應(yīng)用于光學(xué)頻率合成中。飛秒光學(xué)頻率梳可在寬達(dá)一個(gè)光學(xué)倍頻程的波段內(nèi)同時(shí)輸出許多等頻率間隔的頻率成分,這一頻譜特性使其能夠在不同波段的光頻信號(hào)之間以及光頻信號(hào)和微波信號(hào)之間建立聯(lián)系,為進(jìn)行不同光頻之間的相互轉(zhuǎn)換提供了便捷的橋梁。本論文研究了高精度、低噪聲的光學(xué)分頻技術(shù),通過(guò)集成窄線寬飛秒光梳技術(shù)和傳輸振蕩器技術(shù),并提出消除微波頻率噪聲的光頻自參考微波頻率基準(zhǔn)技術(shù),首次實(shí)現(xiàn)了分頻數(shù)可預(yù)置光學(xué)分頻器。通過(guò)此高精度光學(xué)分頻器與基于光學(xué)倍頻效應(yīng)的頻率轉(zhuǎn)換器之間的比對(duì)實(shí)驗(yàn),本文證明了這一高精度光學(xué)分頻器在頻率轉(zhuǎn)換過(guò)程中引入的頻率不穩(wěn)定度達(dá)到6×10-19(1秒積分時(shí)間),分頻不確定度為1.4×10-21。該光學(xué)分頻器的精度比目前最精確的光鐘的精度還要好3個(gè)數(shù)量級(jí),因此在對(duì)光鐘信號(hào)進(jìn)行分頻時(shí)不會(huì)降低其頻率精度,可滿足世界上最好光鐘的應(yīng)用要求;诖烁呔裙鈱W(xué)分頻技術(shù),本文還將一套線寬為0.7 Hz、頻率不穩(wěn)定度達(dá)到1×10-15的1064 nm窄線寬穩(wěn)頻激光的頻率精確轉(zhuǎn)換到一套可大范圍調(diào)諧的鈦寶石單頻連續(xù)激光器,實(shí)現(xiàn)了輸出波長(zhǎng)在700 nm-990nm范圍內(nèi)的光學(xué)頻率合成器。該光學(xué)頻率合成器能在700 nm-990 nm波段中任意指定頻率處實(shí)現(xiàn)高精度單頻窄線寬激光輸出。本文將此光學(xué)頻率合成器在778.6 nm波段的輸出與另一臺(tái)獨(dú)立的778.6 nm窄線寬激光進(jìn)行拍頻測(cè)試,證明了此光學(xué)頻率合成器輸出激光的平均線寬達(dá)到1 Hz,頻率不穩(wěn)定度達(dá)到1.5×10-15(1秒積分時(shí)間),它主要受限于光學(xué)頻率合成器的參考激光的線寬和頻率穩(wěn)定度。在此基礎(chǔ)上,本文還實(shí)現(xiàn)了光學(xué)頻率合成器在不同波段的多通道同時(shí)輸出,并證明了該系統(tǒng)在多通道輸出過(guò)程中引入的頻率不穩(wěn)定度為8×10-19,不同通道之間的頻率比值不確定度為2×10-21。高精度光學(xué)頻率合成技術(shù)的研究可為光鐘應(yīng)用提供必要的工具,同時(shí)為開展精密光譜和精密測(cè)量等領(lǐng)域的研究提供了有效的技術(shù)手段。
[Abstract]:The frequency instability and uncertainty of the optical atomic clocks have reached 10-18 orders of magnitude. They have important applications in the fields of basic physical constants, deep space navigation, geodesy and other fields. These applications require that the output signals of the optical atomic clocks be transferred to other optical or microwave bands in a particular optical band. Precision measurement and comparison study also require that the high frequency stability and high frequency accuracy of the optical atomic clock can not be destroyed during the conversion process. Therefore, the research of high precision optical frequency synthesis is of great significance. Because the frequency value of the optical band signal is at the magnitude of 1014 Hz, it is far larger than the response range of the electronic components, so the existing base The microwave frequency synthesis method in electronic technology is difficult to apply directly to the optical frequency synthesis. The femtosecond optical frequency comb can simultaneously output a number of frequency components with equal frequency intervals within a band of one optical frequency multiplier, which makes it able to be between the optical frequency signals of different bands, as well as the optical and microwave signals. In this paper, a high precision and low noise optical frequency division technology is studied in this paper. By integrating the narrow linewidth femtosecond combing technology and the transmission oscillator technology, the optical frequency reference frequency reference technology for eliminating the microwave frequency noise is proposed for the first time. Through comparison experiments between this high-precision optical frequency divider and frequency converter based on optical frequency multiplier effect, this paper proves that the frequency instability of this high precision optical frequency divider is 6 * 10-19 (1 second integral time), and the frequency division uncertainty is 1.4 * 10-21. The precision of the optical frequency divider is 3 orders of magnitude better than the precision of the most accurate clock. Therefore, the frequency accuracy of the clock signal will not be reduced, and the application requirement of the best clock in the world is met. Based on this high precision optical frequency division technique, a set of line width is 0.7 Hz and the frequency instability reaches 1 * 10. The frequency of the 1064 nm narrow line width and frequency stabilization laser of the -15 is accurately converted to a range of tunable titanium gem single frequency CW lasers. The optical frequency synthesizer of the output wavelength in the range of 700 nm-990nm is realized. The optical frequency synthesizer can achieve high precision single frequency narrow linewidth laser transmission at any specified frequency rate in the 700 nm-990 nm band. In this paper, the output of this optical frequency synthesizer in 778.6 nm band and another independent 778.6 nm narrow line width laser is tested. It is proved that the average line width of the output laser of the optical frequency synthesizer reaches 1 Hz and the frequency instability reaches 1.5 * 10-15 (1 second integration time). It is mainly limited to the reference of the optical frequency synthesizer. On the basis of this, the multi channel simultaneous output of the optical frequency synthesizer at different wavelengths is realized, and the frequency instability of the system is 8 * 10-19, the frequency ratio uncertainty between different channels is 2 * 10-21. high precision optical frequency coincidence. The research of technology can provide the necessary tools for the application of optical clock, and also provide effective technical means for the research of precision spectroscopy and precision measurement.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN74
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉永順;許樹玲;;淺談?lì)l率合成技術(shù)及其發(fā)展[J];安陽(yáng)師范學(xué)院學(xué)報(bào);2006年02期
2 楊j,
本文編號(hào):2098075
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2098075.html
最近更新
教材專著