ZnO異質(zhì)結(jié)光電器件的制備及其性能研究
本文選題:氧化鋅 + 異質(zhì)結(jié); 參考:《北京科技大學(xué)》2016年博士論文
【摘要】:紫外光電器件在綠色照明、光通信和紫外探測等方面有著廣泛的應(yīng)用和巨大的前景。第三代新型半導(dǎo)體氧化鋅(ZnO)材料是一種重要的Ⅱ-Ⅵ族直接帶隙半導(dǎo)體材料,室溫下ZnO的禁帶寬度為3.37 eV,其激子束縛能高達(dá)60 meV,遠(yuǎn)大于室溫’下的熱激活能26 meV。此外,ZnO具有良好的光電導(dǎo)特性,光學(xué)增益系數(shù)高達(dá)320 cm-1,對(duì)紫外光有較強(qiáng)的吸收能力,同時(shí)還具有良好的壓電和熱電特性,而且原料豐富、成本低、無毒、環(huán)境友好。因此作為半導(dǎo)體紫外光電器件的重要材料,ZnO在電致發(fā)光和紫外探測領(lǐng)域具有重要應(yīng)用潛力。本論文主要研究了薄膜和納米棒陣列ZnO材料的光電性質(zhì);赯nO/p-GaN薄膜異質(zhì)結(jié),我們研究了其在近紫外波段的發(fā)光現(xiàn)象和光伏效應(yīng),并以此設(shè)計(jì)實(shí)現(xiàn)了藍(lán)光發(fā)光二極管和自驅(qū)動(dòng)高速紫外光探測器件:基于ZnO納米棒陣列/NiO異質(zhì)結(jié),深入研究了異質(zhì)結(jié)的自驅(qū)動(dòng)光電響應(yīng)特性:基于ZnO/Spiro-MeOTAD有機(jī)無機(jī)雜化異質(zhì)結(jié),系統(tǒng)研究了該異質(zhì)結(jié)的自驅(qū)動(dòng)光電響應(yīng)性能以及應(yīng)變對(duì)器件光響應(yīng)性能的調(diào)控規(guī)律。通過優(yōu)化實(shí)驗(yàn)條件和調(diào)控合成參數(shù),分別利用磁控濺射技術(shù)和水熱合成法制備了ZnO薄膜與ZnO納米棒陣列。研究了水熱法前驅(qū)液濃度對(duì)ZnO納米棒陣列形貌的影響規(guī)律。生長的ZnO薄膜和ZnO納米棒陣列都具有六方纖鋅礦結(jié)構(gòu),沿[0001]極性軸方向取向生長,同時(shí)光學(xué)特性優(yōu)異,具有較強(qiáng)的禁帶邊發(fā)射峰和弱的可見光發(fā)射峰;魻栃(yīng)測試得到ZnO薄膜的電子濃度和電子遷移率分別為3.13×1018 cm-3和14.6cm2V-1 s-1。研究了ZnO薄膜與p型GaN薄膜形成的異質(zhì)結(jié)發(fā)光二極管的電致發(fā)光規(guī)律。該二極管器件的串聯(lián)電阻約為102Ω,發(fā)光閾值電壓約為2.7V。電致發(fā)光譜表明,當(dāng)電壓高于2.7V時(shí),實(shí)現(xiàn)了二極管穩(wěn)定高亮的460nm藍(lán)光輸出,發(fā)光效率約0.89%,并且發(fā)光強(qiáng)度和注入電流遵循冪指數(shù)法則,即L∝Im,低注入電流(10mA)時(shí)L-I曲線呈超線性關(guān)系(m=1.35),而高注入電流下(10mA)幾乎成線性關(guān)系(m=0.95),m非常接近1.0表明非輻射復(fù)合缺陷對(duì)器件光發(fā)射的影響較小。研究了基于ZnO薄膜和p型GaN薄膜的全無機(jī)pn結(jié)紫外探測器的自驅(qū)動(dòng)光電響應(yīng)性能。該異質(zhì)結(jié)器件在紫外光波段具有優(yōu)異的光伏效應(yīng),1.0 mW/cm2紫外光入射時(shí),可得到開路電壓和短路電流分別為1.32 V和5.55μA。光電流-時(shí)間(I—t)響應(yīng)特性測試結(jié)果表明,該器件對(duì)514 nm的可見光沒有響應(yīng),而365 nm和254 nm兩種波長的紫外光輻照時(shí),光電流的響應(yīng)快速、連續(xù)且可重復(fù),響應(yīng)時(shí)間和恢復(fù)時(shí)間均小于0.3s。光電流隨著兩種波長紫外光光強(qiáng)的增大而線性增大,且沒有出現(xiàn)飽和現(xiàn)象。光譜響應(yīng)度曲線測試結(jié)果顯示該器件具有高達(dá)102的紫外-可見光抑制比,響應(yīng)度的最大值高達(dá)25mA/W,該值遠(yuǎn)大于之前已報(bào)道的自驅(qū)動(dòng)紫外探測器的值。研究了ZnO納米棒陣列和p型NiO薄膜形成的全無機(jī)pn結(jié)紫外探測器的自驅(qū)動(dòng)光電響應(yīng)性能。光電測試結(jié)果表明,該器件可工作在光伏模式,零伏偏壓下,在波長355 nm功率3.2 mW/cm2的紫外光輻照時(shí)可產(chǎn)生顯著的約0,3μA光電流。在0.1 mV正向偏壓下,紫外光開啟和關(guān)閉時(shí)光電流呈正負(fù)交替變化,表明是一種快速開關(guān)二進(jìn)制響應(yīng),主要?dú)w因于ZnO/NiO器件的光伏特性和低的開啟電壓。零伏偏壓下器件的響應(yīng)度隨著紫外光輻照功率的增加先快速增加然后逐漸減小,0.4 mW/cm2輻照助率下達(dá)到了最大值0.44 mA/W。研究了柔性襯底上ZnO薄膜與p型Spiro-MeOTAD形成的有機(jī)無機(jī)雜化異質(zhì)結(jié)紫外探測器的自驅(qū)動(dòng)光電響應(yīng)性能及其應(yīng)變調(diào)控規(guī)律。電學(xué)性能測試表明,異質(zhì)結(jié)呈現(xiàn)典型的非線性整流特性,開啟電壓較低(~0.8V),±1V偏壓下的整流比高達(dá)7.69×102。光電測試結(jié)果表明,器件在紫外光輻照下具有明顯的光響應(yīng)和顯著的光伏效應(yīng)。器件在零伏偏壓下的光電流響應(yīng)快速、連續(xù)、可重復(fù)且沒有明顯衰減,響應(yīng)時(shí)間和恢復(fù)時(shí)間小于0.2s。應(yīng)變對(duì)ZnO/Spiro-MeOTAD器件光電響應(yīng)性能的影響規(guī)律表明,當(dāng)施加的拉伸應(yīng)變逐漸增加時(shí),器件的光電流、光響應(yīng)度和比探測度逐漸增大,當(dāng)拉伸應(yīng)變?cè)黾拥?.753%時(shí),光電流、光響應(yīng)度和比探測度相比無應(yīng)變時(shí)增加了近1倍;相反地,壓縮應(yīng)變?cè)黾訒r(shí)光電流、光響應(yīng)度和比探測度減小。這主要是由于ZnO在不同應(yīng)變下產(chǎn)生的壓電極化電荷會(huì)影響異質(zhì)結(jié)耗盡區(qū)內(nèi)建電場的強(qiáng)弱,從而導(dǎo)致光生電子空穴對(duì)的分離效率被提高或抑制造成的。
[Abstract]:UV optoelectronic devices have extensive applications and great prospects in green lighting, optical communication and ultraviolet detection. The third generation of new semiconductor Zinc Oxide (ZnO) material is an important type of II VI direct band gap semiconductor material. The band gap of ZnO at room temperature is 3.37 eV, and its exciton binding energy is up to 60 meV, far greater than room temperature. The thermal activation energy is 26 meV.. In addition, ZnO has good photoconductivity, optical gain coefficient up to 320 cm-1, strong absorption capacity to ultraviolet light, good piezoelectricity and thermoelectric properties, and rich in raw materials, low cost, non-toxic and environmentally friendly. Therefore, ZnO is an important material for semiconductor UV optoelectronic devices. The optical and UV detection fields have important potential applications. This paper mainly studies the photoelectric properties of the thin film and nanorod array ZnO materials. Based on the ZnO/p-GaN thin film heterojunction, we have studied its luminescence and photovoltaic effect in the near ultraviolet band, and designed the blue light emitting diode and the self driven high-speed ultraviolet detection. Device: Based on the ZnO nanorod array /NiO heterojunction, the self driven photoelectric response characteristics of the heterojunction are studied in depth: Based on the ZnO/Spiro-MeOTAD organic-inorganic hybrid heterojunction, the self driven photoelectric response and the regulation of the response performance of the heterostructure to the optical response of the device are systematically studied. ZnO films and ZnO nanorod arrays were prepared by magnetron sputtering and hydrothermal synthesis. The influence of the concentration of hydrothermal precursor on the morphology of ZnO nanorods was studied. The growth of ZnO and ZnO nanorods arrays had six zinite structures, along the direction of the 0001] polar axis, and the optical properties of the nanorods. Excellent, strong band edge emission peak and weak visible light emission peak. The electron concentration and electron mobility of ZnO film are 3.13 x 1018 cm-3 and 14.6cm2V-1 s-1. respectively. The electroluminescence of the heterojunction light emitting diode of ZnO film and P type GaN film is studied. The series resistance of the diode device is in series. About 102 Omega, the luminescence threshold voltage of about 2.7V. electroluminescence spectrum shows that when the voltage is higher than 2.7V, the high brightness 460nm blue light output of the diode is achieved, the luminous efficiency is about 0.89%, and the luminescence intensity and injection current follow the power exponent rule, that is, L Im, and low injection current (10mA), the L-I curve is superlinear (m=1.35), and high injection electricity The flow (10mA) is almost linear (m=0.95), and M is very close to 1. The effect of non radiation composite defects on the optical emission is small. The self driving photoelectric response of all inorganic PN junction UV detectors based on ZnO film and P GaN thin film is studied. The heterojunction device has excellent photovoltaic effect and 1 mW/cm2 violet in ultraviolet band. When the external light is incident, the test results of the open circuit voltage and the short circuit current of 1.32 V and 5.55 mu A. photocurrent time (I - t) show that the device has no response to the visible light of 514 nm, while the 365 nm and 254 nm two wavelengths are irradiated by ultraviolet light, and the photocurrent should be fast, continuous and repeatable, response time and recovery time. The average less than 0.3s. photocurrent increases linearly with the increase of ultraviolet light intensity of two wavelengths, and does not appear to be saturated. The spectral response curve test results show that the device has up to 102 UV visible light rejection ratio and the maximum response degree is up to 25mA/W, which is much larger than the value of the previously reported UV detector. The self driving photoelectric response performance of the all inorganic PN junction UV detector formed by ZnO nanorod array and P NiO thin film is studied. The photoelectric test results show that the device can work in the photovoltaic mode, the zero volt bias, and can produce a significant approximately 0,3 micron photocurrent at the wavelength of 355 nm power of 3.2 mW/cm2 at the zero volt voltage. In the 0.1 mV positive bias voltage, the device can produce a positive bias voltage at 0.1 mV positive bias. At the same time, the time current of UV opening and closing is positive and negative alternately, indicating that it is a fast switching binary response, which is mainly attributed to the photovoltaic characteristics and low open voltage of the ZnO/NiO device. The response degree of the device under the zero volt bias increases rapidly and gradually decreases with the increase of ultraviolet radiation power, and the 0.4 mW/cm2 irradiation assistance The maximum value of 0.44 mA/W. is reached to study the self driving photoelectric response performance and strain regulation of the organic and inorganic hybrid heterojunction UV detector formed by ZnO thin film on the flexible substrate and P Spiro-MeOTAD. The electrical properties test shows that the heterojunction presents a typical nonlinear rectifying characteristic, the opening voltage is lower (to 0.8V), and the + 1V bias voltage is under the bias voltage. The 7.69 x 102. photoelectric test results show that the device has obvious light response and significant photovoltaic effect under UV irradiation. The photocurrent response of the device under zero voltage bias is fast, continuous, repeatable and without obvious attenuation, and the response time and recovery time are smaller than the photoelectric response of the 0.2s. strain to the ZnO/Spiro-MeOTAD device. The effect of the performance shows that when the tensile strain is increased gradually, the photocurrent, the light response degree and the specific detection measure gradually increase. When the tensile strain increases to 0.753%, the photocurrent, the light response degree and the specific detection measure increase nearly 1 times when compared with the non strain measurement. On the contrary, the compression strain increases the time current, the light response degree and the ratio exploration. This is mainly due to the effect of the piezoelectric polarization charge of ZnO under different strains on the strength of the built electric field in the heterojunction depleted region, which leads to the increase or suppression of the separation efficiency of the photogenerated electron hole pair.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN23;TN304.21
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田牧;異質(zhì)結(jié)擴(kuò)散模型電流傳輸理論研究——Ⅲ.異質(zhì)結(jié)伏—安特性的擴(kuò)散-發(fā)射組合模型[J];固體電子學(xué)研究與進(jìn)展;1984年01期
2 楊文庫,鄧文榮;異質(zhì)結(jié)內(nèi)建電壓的研究[J];紅外研究;1989年02期
3 田牧;異質(zhì)結(jié)擴(kuò)散模型電流傳輸理論研究——Ⅰ.突變異質(zhì)結(jié)平衡能帶圖建立的新途徑[J];固體電子學(xué)研究與進(jìn)展;1983年01期
4 田牧;異質(zhì)結(jié)載流子傳輸新模型[J];固體電子學(xué)研究與進(jìn)展;1991年02期
5 田牧;異質(zhì)結(jié)載流子傳輸新模型[J];固體電子學(xué)研究與進(jìn)展;1991年04期
6 田牧;異質(zhì)結(jié)電流傳輸機(jī)理的研究[J];固體電子學(xué)研究與進(jìn)展;1982年04期
7 莊婉如;;異質(zhì)結(jié)光電器件的液相外延生長[J];激光與紅外;1985年10期
8 盧勵(lì)吾,張硯華,GeWeikun,W.Y.Ho,CharlesSurya,K.Y.Tongc;大電流(直流)沖擊試驗(yàn)對(duì)-族氮化物異質(zhì)結(jié)深電子態(tài)的影響[J];半導(dǎo)體學(xué)報(bào);1999年08期
9 田牧;異質(zhì)結(jié)擴(kuò)散模型電流傳輸理論研究——Ⅱ.一維半導(dǎo)體結(jié)邊界上邊界條件的統(tǒng)一理論[J];固體電子學(xué)研究與進(jìn)展;1983年03期
10 田牧;異質(zhì)結(jié)能帶不連續(xù)性的理論確定[J];固體電子學(xué)研究與進(jìn)展;1986年01期
相關(guān)會(huì)議論文 前10條
1 吳季懷;岳根田;林建明;蘭章;;聚合物異質(zhì)結(jié)在染料敏化太陽能電池中的應(yīng)用研究[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
2 薛冰純;邵學(xué)廣;蔡文生;;彎曲型和直線型碳納米管異質(zhì)結(jié)的穩(wěn)定性和電子結(jié)構(gòu)比較[A];中國化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)化學(xué)信息學(xué)與化學(xué)計(jì)量學(xué)分會(huì)場論文集[C];2008年
3 汪圣堯;戴珂;陳浩;;溴氧化鉍/鉬酸鎳異質(zhì)結(jié)制備、表征及可見光響應(yīng)的光催化活性[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第21分會(huì):光化學(xué)[C];2014年
4 李維實(shí);;基于分子異質(zhì)結(jié)化合物的有機(jī)光電材料設(shè)計(jì)[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第05分會(huì)場摘要集[C];2010年
5 莫雄;陳紅征;施敏敏;汪茫;;溶液共混制備酞菁/傒本體異質(zhì)結(jié)[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年
6 周凱歌;Freddie Withers;曹陽;胡晟;于葛亮;Cinzia Casiraghi;;以拉曼光譜探測二維異質(zhì)結(jié)中的范德華界面相互作用[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第30分會(huì):低維碳材料[C];2014年
7 王峻嶺;游陸;;(La,Sr)MnO_3/BiFeO_3異質(zhì)結(jié)中磁疇的電場控制研究[A];2011中國材料研討會(huì)論文摘要集[C];2011年
8 戴守愚;劉立豐;呂惠賓;陳正豪;;磁性異質(zhì)結(jié)中的半導(dǎo)體-金屬轉(zhuǎn)變現(xiàn)象[A];第十二屆全國相圖學(xué)術(shù)會(huì)議論文集[C];2004年
9 何暢;賀慶國;李永舫;白鳳蓮;;新型分子TPA-DCM-TPA的合成及光伏性能研究[A];中國化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年
10 李建章;王洪;陳久福;鐘俊波;胡偉;;g-C_3N_4/TiO_2異質(zhì)結(jié)的制備及其光催化脫色性能[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第12分會(huì):催化化學(xué)[C];2014年
相關(guān)博士學(xué)位論文 前4條
1 鄭奇靖;過渡金屬二硫化物異質(zhì)結(jié)中超快電荷轉(zhuǎn)移的非絕熱動(dòng)力學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2016年
2 申衍偉;ZnO異質(zhì)結(jié)光電器件的制備及其性能研究[D];北京科技大學(xué);2016年
3 程麗君;基于Bi_2O_3異質(zhì)結(jié)光催化劑制備、表征及催化活性研究[D];天津大學(xué);2014年
4 陶晨;反型體異質(zhì)結(jié)聚合物太陽能電池的研究[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 阮開群;基于石墨烯/超薄硅異質(zhì)結(jié)高性能柔性光伏器件的研究[D];蘇州大學(xué);2015年
2 單政;MnO_2/TiO_2納米異質(zhì)結(jié)的制備及其超級(jí)電容特性研究[D];合肥工業(yè)大學(xué);2015年
3 張俊磊;鉍基半導(dǎo)體異質(zhì)結(jié)的設(shè)計(jì)、合成及其光催化性能[D];東華大學(xué);2016年
4 王楠;ZnO/Cu_2O納米核殼異質(zhì)結(jié)陣列的制備及光電特性研究[D];遼寧師范大學(xué);2015年
5 陳惠娟;納米碳/硅異質(zhì)結(jié)的制備及其氣敏性研究[D];中國石油大學(xué);2010年
6 高熙禮;用磁控濺射方法制備非晶碳膜/硅異質(zhì)結(jié)及其電輸運(yùn)性質(zhì)的研究[D];中國石油大學(xué);2008年
7 張樂陶;Fe_3O_4基異質(zhì)結(jié)的微觀結(jié)構(gòu)、磁性和輸運(yùn)性質(zhì)[D];天津大學(xué);2010年
8 袁德華;全氧化物異質(zhì)結(jié)HoMnO_3/Nb-SrTiO_3的電學(xué)性質(zhì)研究[D];煙臺(tái)大學(xué);2011年
9 曹建業(yè);釩酸銀微米片及其異質(zhì)結(jié)的合成及光催化性質(zhì)的研究[D];吉林大學(xué);2014年
10 岳美瓊;ZnO/BaTiO_3異質(zhì)結(jié)的液相法(CSD)制備及其電性能研究[D];西南科技大學(xué);2010年
,本文編號(hào):2112476
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2112476.html