有機(jī)電致發(fā)光器件的載流子調(diào)控與性能研究
[Abstract]:Organic light-emitting diodes (OLEDs), which has the advantages of wide material source, full solid state active luminescence, high efficiency, flexible and thin, large area and multi-functional applications, has become a hot spot in the field of information display, and is gradually realizing large-scale commercial production. In recent years, with new materials, structure and work The rapid development of art and the in-depth study of the mechanism of luminescence have made great progress in the basic research and application technology of OLEDs. However, there are still problems in OLEDs, such as device efficiency, stability, good product rate and cost. It is necessary to continue the basic research as a breakthrough, work on the design and optimization of the device structure and study in depth. In order to solve the problems in the OLEDs, the carrier control method is used to improve the balance of the carrier in the dual luminescent layer OLEDs. The fluorescent material with bipolar characteristics is used as the carrier regulation and the luminescent layer to prepare the white light organic electroluminescent device (WOLEDs), and the organism is studied. The mechanism of heterojunction charge production layer on improving the performance of series OLEDs devices; using carrier regulation in inverted polymer solar cells (Inverted polymer solar cells, IPSCs) to prepare high performance devices based on ZnO cathode modification layer. At the same time, the mechanism of current carrier regulation is discussed and the carrier regulation structure pair is studied. In order to promote the commercial application process of OLEDs, the main research contents include: 1, the study of the effect of carrier control structure on the performance of phosphorescent OLEDs devices and the mechanism of action are cavity transmission materials N, N '-bis (naphthalen-1-yl) -N, N' -bis (phenyl) -benzidine (phenyl) -benzidine (NPB) as the hole transport layer and the first luminescent layer body, The bipolar material 4,4 '-bis (carbazol-9-yl) biphenyl (CBP) is used as the main body of the second luminescent layer, the orange phosphorescent dye bis[2- (4-tert-butylphenyl) -benzothiazolato-N, C2]iridium (acetylacetonate) (t-bt) 2Ir (t-bt) as the object. The influence and mechanism of the carrier balance and carrier complex region expansion are constructed. The study shows that the bright voltage of the optimized double layer device is 3.3 V and the maximum luminance is 30898 cd/m2. Compared with the single luminescent layer, the bright voltage is reduced by 36.5%, the brightness is increased by 174%., and the power efficiency of the dual luminescent layer is remarkable. The main function of the carrier control structure is to eliminate the highest occupant molecular orbital (highest occupied molecular orbital, HOMO) to eliminate the energy level barrier of the first luminescent layer, to reduce the accumulation of the interface carrier, and to increase the transmission channel of the electron and hole, and realize the realization of the device. The carrier is balanced, the carrier recombination area is expanded, the utilization of the carrier is improved, the high efficiency luminescence and the stability of the device are achieved. At the same time, the white light PhOLEDs is prepared by the spacer Alq3, TAPC, CBP and mCP with different carrier transmission capacity, and the influence of the interlayer on the performance of the device and the device are also studied. The mechanism of internal carrier transport and energy transfer. It is found that the lowest bright voltage 6.2V and the optimal white light CIE color coordinate (0.35,0.34).2 are obtained based on the Alq3 interlayer, and the effects of the carrier regulation structure on the performance and spectral properties of WOLEDs devices are used for the dual polar green fluorescent material 2-{4-[bis (9,9-dimethylfluoren). YL) amino]plenyl}-5- (dimesitylboryl) thiophene (flamb-1t) is used as a carrier control layer and a green luminescent layer, combined with a 3- (dicyanomethylene) -5,5-dimethyl-1- (4-dimethylamino-styryl) cyclohexene (dcddc) red light layer and a 4,4 '. The influence of the thickness of the flamb-1t bipolar luminescent layer on the performance of the device and the carrier complex core region is discussed. It is found that when the thickness of the flamb-1t increases from 3nm to 15nm, the device brightness and maximum power efficiency are significantly increased by 218% and the main function of the 330%.f1amb-1t carrier is through the bipolar transmission characteristics of the electrons and holes. It realizes the carrier transmission balance in the white light device, constructs the flamb-1t/dcddc/flamb-1t carrier trap structure and uses the direct carrier capture to realize the dcddc red light emission, thus regulating the complex center of the carrier and realizing the white light emission. When the flamb-1t is 10nm, the commissioninternationaledel'eclairage (CIE) coordinates are obtained. Under the different voltage of woleds. 0.33,0.36, the optimal WOLEDs carrier complex center position is always restricted to three stable regions, which indicates that the flamb-1t carrier control layer can effectively control the.3 of the exciton formation region, and study the effect of the performance of the organic charge generation layer on the performance of the serial OLEDs by boronsubphthalocyaninech Loride (subpc): fullerene (C60) and cobalt (II) phthalocyanine (COPC): C60 two kinds of organism heterojunction charge generation layer, respectively, to prepare high performance series OLEDs respectively. The effect of charge production layer carrier optimization on the performance of series devices is studied. The study shows that the optimization of charge generation layer can improve the heterogeneous boundary of the organism. Surface dipoles increase the number of dipoles, increase the charge generation capacity of the charge generation layer, increase the carrier transmission channel, enhance the carrier transport capacity of the charge generation layer, promote the balanced transmission of the carrier in the device, and improve the performance of the device. Through the above study, the content of the donor subpc and COPC in the charge generation layer is obtained. The maximum current efficiency is 63.6cd/a and 50.2cd/a series oleds.4 respectively. The influence of ZnO cathode modification layer on the properties of inverted PSCs is studied by low temperature annealing process, the effect of the cathode modification layer of Zinc Oxide (zincoxide, ZnO) is prepared by low temperature annealing process. The effect of the photoelectric properties of ZnO on the control of iPSCs carrier and the performance of the device is studied. The surface morphology of ZnO films can be improved by annealing process, which is mainly attributed to the distribution of heat flow, the volatilization process of solvent and the thermal decomposition process of the ZnO precursor. The energy conversion efficiency (power-conversionefficiency, PCE) of the inverted device using vacuum dynamic annealing ZnO is 4.01%, compared to the original. The performance of the bit annealed ZnO has been improved by 15.8%. The function of the vacuum dynamic annealing ZnO is to reduce the contact resistance between the ito/ active layers and suppress the leakage current. At the same time, the complex process of the carrier in the controller parts is used to improve the transmission and collection of the electrons, thus improving the performance of the device. Several different structures of OLEDs with carrier control ability provide theoretical basis and theoretical guidance for the realization of high performance devices. At the same time, the Zn O functional layer with carrier control ability can be used to improve the performance of IPSC devices. This indicates that carrier control is an effective way to realize high performance organic optoelectronic devices.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 付鳴;;改善器件性能的射頻退火[J];儀器制造;1982年06期
2 關(guān)振東;燕秀榮;賴德生;曾世誠(chéng);劉淑敏;余惠玲;;富碲組份對(duì)碲鎘汞器件性能的影響[J];激光與紅外;1983年07期
3 劉顯戰(zhàn),,張書剛,張巧云,鐘青;提高敏感器件性能的措施[J];壓電與聲光;1994年03期
4 曲波;陳志堅(jiān);許峰;龔旗煌;;色度穩(wěn)定的新型紅色有機(jī)電致發(fā)光材料及其器件性能研究[J];量子電子學(xué)報(bào);2007年01期
5 ;n-型有機(jī)場(chǎng)效應(yīng)晶體管穩(wěn)定性有望進(jìn)一步提高[J];傳感器世界;2009年06期
6 徐岳生;;硅材料中的雜質(zhì)與缺陷對(duì)器件性能影響學(xué)習(xí)班勝利結(jié)束[J];河北工學(xué)院學(xué)報(bào);1981年02期
7 嚴(yán)岳林,徐介平;超聲跟蹤法制作誤差對(duì)器件性能的影響及補(bǔ)償[J];壓電與聲光;1992年03期
8 J.M.Duffalo,J.R.Monkowski,吳佑華;粒子沾污與器件性能[J];微電子學(xué);1984年04期
9 孫膺九;硅中碳的行為與影響[J];稀有金屬;1984年04期
10 潘桂忠;1k×4 SRAM 研制與生產(chǎn)[J];微電子學(xué)與計(jì)算機(jī);1987年02期
相關(guān)會(huì)議論文 前8條
1 耿延候;董少?gòu)?qiáng);曲建飛;田洪坤;謝志元;閆東航;王佛松;;共軛分子的組裝結(jié)構(gòu)調(diào)控及器件性能[A];2014年兩岸三地高分子液晶態(tài)與超分子有序結(jié)構(gòu)學(xué)術(shù)研討會(huì)摘要集[C];2014年
2 姚寧;邢宏偉;穆慧慧;常立紅;崔娜娜;王英儉;張兵臨;;石墨緩沖層對(duì)有機(jī)電致發(fā)光器件性能的影響[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第2分冊(cè))[C];2010年
3 方俊鋒;張文俊;李曉冬;;有機(jī)小分子光伏界面修飾材料和器件性能研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第25分會(huì):有機(jī)光伏[C];2014年
4 邱法斌;全宇軍;孫彥峰;朱棋峰;劉少林;鄒兆一;徐寶琨;;NASICON材料溶膠-凝膠合成工藝條件優(yōu)化及其對(duì)CO_2敏感器件性能的影響[A];第八屆全國(guó)氣濕敏傳感器技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2004年
5 汝瓊娜;李光平;李靜;何秀坤;;SI-GaAs材料微區(qū)均勻性對(duì)門電路器件性能影響[A];中國(guó)電子學(xué)會(huì)生產(chǎn)技術(shù)學(xué)分會(huì)理化分析專業(yè)委員會(huì)第六屆年會(huì)論文集[C];1999年
6 黃禮鎣;;高增益高效率的4GHZ 5W GaAsFET[A];1993年全國(guó)微波會(huì)議論文集(下冊(cè))[C];1993年
7 方小燕;胡皓全;趙家升;楊顯清;;外部電磁干擾對(duì)SAW器件性能的影響研究[A];第十四屆全國(guó)電磁兼容學(xué)術(shù)會(huì)議論文集[C];2004年
8 郝云;謝偉良;周禎華;熊紹珍;;OLED的陽極優(yōu)化[A];第九屆全國(guó)發(fā)光學(xué)術(shù)會(huì)議摘要集[C];2001年
相關(guān)博士學(xué)位論文 前10條
1 李慶端;有機(jī)小分子本體異質(zhì)結(jié)太陽電池的性能研究[D];華南理工大學(xué);2015年
2 李立勝;卟啉小分子體異質(zhì)結(jié)太陽能電池和光電探測(cè)器的活性層形貌調(diào)控及器件性能研究[D];華南理工大學(xué);2015年
3 李暢;聚合物/無機(jī)納米復(fù)合體系太陽能電池光伏性能研究[D];北京理工大學(xué);2015年
4 李玉峰;有機(jī)場(chǎng)效應(yīng)晶體管界面修飾及性能研究[D];青島科技大學(xué);2015年
5 馬柱;有機(jī)電致發(fā)光器件的載流子調(diào)控與性能研究[D];電子科技大學(xué);2016年
6 夏虹;有機(jī)電致磷光器件中的主—客體材料匹配及對(duì)器件性能的影響[D];吉林大學(xué);2006年
7 李青;電子的注入與傳輸對(duì)有機(jī)光電子器件性能的影響[D];電子科技大學(xué);2013年
8 袁劍峰;酞菁銅有機(jī)場(chǎng)效應(yīng)晶體管器件性能的研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2005年
9 高志翔;有機(jī)電致發(fā)光二極管的界面行為及其對(duì)器件性能的影響[D];太原理工大學(xué);2013年
10 李春;可溶性有機(jī)小分子電致發(fā)光器件制備與性能研究[D];華南理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 黃媛;基于側(cè)鏈修飾的卟啉小分子太陽能電池的合成及其光伏性能研究[D];華南理工大學(xué);2015年
2 鄭靈程;襯底加熱和電極修飾對(duì)有機(jī)場(chǎng)效應(yīng)晶體管性能影響的研究[D];天津理工大學(xué);2015年
3 蔣晶;基于溶液化方法制備有機(jī)場(chǎng)效應(yīng)晶體管的研究[D];天津理工大學(xué);2015年
4 李為國(guó);基于a-IGZ0薄膜材料的半導(dǎo)體器件[D];山東大學(xué);2015年
5 宋迎雪;利用陰極界面修飾提高聚合物太陽能電池的性能和穩(wěn)定性[D];蘇州大學(xué);2015年
6 舒露鋒;電極修飾對(duì)并五苯有機(jī)場(chǎng)效應(yīng)管性能的影響[D];電子科技大學(xué);2015年
7 肖曼軍;活性層形貌添加劑對(duì)聚(3-己基噻吩)太陽能電池性能的影響及其機(jī)理研究[D];湘潭大學(xué);2015年
8 畢然;界面與傳輸層對(duì)有機(jī)發(fā)光器件性能影響的研究[D];南京郵電大學(xué);2015年
9 王婉;基于ACY及其衍生物的有機(jī)光電器件研究[D];電子科技大學(xué);2012年
10 董木森;提高OLED中載流子注入和傳輸效率及器件性能的研究[D];天津理工大學(xué);2011年
本文編號(hào):2119993
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2119993.html