多輸入多輸出被動時反水聲通信技術(shù)研究
[Abstract]:In recent years, more and more marine activities have been engaged in shallow water. More and more attention and attention are paid to underwater acoustic communication technology. The rate and performance of underwater acoustic communication are higher. The Multiple-input multiple-output (MIMO) technology can make use of the weak space of underwater acoustic channel in shallow water environment. Correlation is used to gain a rich spatial degree of freedom, so it can improve the rate and communication performance of underwater acoustic communication. Time reversal (TR) has low computational complexity, and its good space-time focusing characteristics can reduce Intercode interference (Inter-symbol interference, ISI) and space caused by the multipath effect of shallow water channels. Co-channel interference (CCI) resulting from the inter correlation, so the communication system can achieve good communication performance with a lower complexity. According to the different implementation process of the space-time focus, the TR technology is divided into active time inverse (Active time reversal, ATR) and the active time reversal (Passive time reversal, PTR). In the process, the time interval between the detection signal and the information signal is shorter, and it can ensure the consistency of the estimated channel and the actual transmission channel. Therefore, PTR is more suitable for the actual shallow water environment. In the face of high speed and high performance underwater acoustic communication, it is of great theoretical and practical significance to study MIMO-PTR underwater acoustic communication technology. The current research status and development trend of MIMO-PTR underwater acoustic communication, combined with the characteristics of MIMO technology and PTR technology, focuses on the detailed study of the residual ISI and CCI suppression methods after PTR processing in MIMO-PTR underwater acoustic communication. The validity of the method is proved by theoretical deduction, simulation analysis and test verification. In the next few aspects, the study of.1 is carried out to study the interference suppression performance of PTR in underwater acoustic communication. The space-time focusing performance of.PTR can compress the multipath effect of the underwater acoustic channel, reduce the spatial correlation of the transmission channel corresponding to the information signals transmitted by different emitter elements, and then achieve the interference of reducing the ISI and CCI and improving the communication performance effect of.PTR. The suppression performance directly determines the residual ISI and CCI, and then determines the complexity of other technologies used for post-processing. The existing research on PTR underwater acoustic communication is divided into two aspects: single input and multiple output (Single-input multiple-output, SIMO) PTR underwater acoustic communication and MIMO-PTR underwater acoustic communication using spatial diversity and space division multiplexing simultaneously. Therefore, based on the research status of PTR underwater acoustic communication, the interference suppression performance of PTR is analyzed. First, through theoretical deduction, the technical index to measure the interference suppression performance of PTR, the general expression of the signal interference noise ratio, is obtained, and then the shallow sea channel model is established based on the ray acoustic theory and the geometric structure of the channel. This is based on the analysis of the influence of the number of receiving array elements, the number of emitter elements and the signal-to-noise ratio on the interference suppression performance of PTR. The results show that there will be residual interference after PTR processing, whether in SIMO-PTR underwater communication or at the same time using space diversity and space division multiplexing in MIMO-PTR underwater communication. High communication performance requires the use of adaptive equalization and adaptive interference cancellation for post-processing.2, and the study of MIMO-PTR underwater acoustic communications based on Time-reversal space-time block coding (TR-STBC) based on.PTR underwater communication.PTR underwater communication, the interference suppression performance of PTR is related to the spatial diversity gain. In less time, the existing SIMO-PTR underwater acoustic communication method is only by receiving diversity, the gain of spatial diversity is low, so the performance of PTR is poor and the complexity of adaptive equalization for PTR post-processing is high. In order to further improve the interference suppression performance of PTR by using transmit diversity, a MIMO-PTR underwater communication based on TR-STBC is proposed in this paper. Method. The proposed method is based on the principle of the 2 element TR-STBC scheme suitable for the frequency selective channel and the principle of the STBC scheme suitable for any emitter element 1/2 bit rate, and designs a TR-STBC scheme for the rate of 1/2 code for any emitter element, and combines the TR-STBC scheme with PTR in underwater acoustic communication. The principle of the proposed method is analyzed, and the effectiveness of the proposed method is simulated and tested. The results show that the proposed method uses the transmit diversity to improve the interference suppression performance of PTR. Therefore, compared with the SIMO-PTR underwater acoustic communication method, the proposed method has a lower complexity of adaptive equalization and PTR processing. The later performance is better.3, and the study of MIMO-PTR underwater acoustic communication based on continuous ISI and CCI, while using space diversity and space division multiplexing MIMO-PTR underwater acoustic communication, can effectively suppress ISI and CCI in underwater acoustic communication through the space time focusing of PTR, but the residual ISI and CCI still exist in the signal after PTR processing, which will affect the communication. In order to reduce the residual ISI and CCI after PTR processing with lower computational complexity, based on the design principle of continuous interference cancellation (Successive interference cancellation, SIC) technology and the characteristics of the combined channel response after PTR processing, a MIMO-PTR underwater acoustic communication method is proposed for continuous ISI and CCI cancellation. First, the proposed formula is analyzed. The principle of the method is then used to verify the effectiveness of the proposed method in the actual underwater environment by using the channel pool and the test data obtained from the Pine Lake test in Jilin province. The theoretical analysis and experimental results show that the proposed method can effectively suppress the residual interference after the PTR treatment, so that the MIMO-P has not been treated with any technology. Compared with the TR underwater acoustic communication, the communication performance of the proposed method is better. Compared with the existing SIC based MIMO-PTR underwater acoustic communication method, the proposed method has a lower computational complexity under the similar communication performance, and the MIMO-PTR underwater acoustic communication method based on the Filtered multitone, FMT modulation is studied. When the communication bandwidth is wide, the method is also beneficial. If single carrier modulation (Single-carrier, SC) technology is used for MIMO-PTR underwater communication with space diversity and space division multiplexing, the bit range of residual interference after PTR processing will be larger. This will result in poor performance after PTR processing and the interference suppression techniques used in post-processing are more complex. Based on this problem, FMT technology is used. In this paper, a FMT modulated MIMO-PTR underwater acoustic communication method is proposed. The proposed method uses FMT technology to divide the communication band into several subcarriers with wide bandwidth and no overlap. The adjacent subcarriers do not set the protection band, and the information symbols are modulated to different subcarriers after the conversion. The proposed method is described. The theoretical analysis and test results show that, as the proposed method uses FMT technology to reduce the symbol range of the residual interference after PTR processing, the proposed method is compared with the existing SC modulation MIMO-PTR underwater acoustic communication method, the proposed method of channel estimation, PTR processing. As well as interference suppression, the computation complexity is lower, and the communication performance is better.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN929.3
【相似文獻】
相關(guān)期刊論文 前10條
1 江月明;潛水聲通信的現(xiàn)在與未來[J];電聲技術(shù);2003年08期
2 蔡惠智;劉云濤;蔡慧;鄧紅超;王永豐;;第八講 水聲通信及其研究進展[J];物理;2006年12期
3 金為民;;時反水聲通信的研究現(xiàn)狀和發(fā)展方向[J];聲學(xué)與電子工程;2007年02期
4 戴榮濤;王青春;;現(xiàn)代水聲通信技術(shù)的發(fā)展及應(yīng)用[J];科技廣場;2008年08期
5 周建清;郭中源;賈寧;黃建純;吳玉泉;陳庚;;無線/水聲通信浮標(biāo)技術(shù)研究及其實現(xiàn)[J];應(yīng)用聲學(xué);2012年06期
6 王曉亮;曾啟帆;劉海軍;蔡郭棟;;水聲通信遠程在線控制系統(tǒng)設(shè)計與實現(xiàn)[J];科技資訊;2012年30期
7 蘇皋聲;艦艇用水聲通信設(shè)備近期發(fā)展[J];聲學(xué)與電子工程;1992年01期
8 馬雯,黃建國,張群飛;基于正交頻分復(fù)用的高速水聲通信技術(shù)研究[J];電聲技術(shù);2004年05期
9 汪俊,王海斌,吳立新;遠程水聲通信中的多信號恒包絡(luò)合成方法[J];哈爾濱工程大學(xué)學(xué)報;2005年04期
10 林偉;陳強;汪玉;;一種有效的水聲通信多普勒處理方法[J];聲學(xué)技術(shù);2005年04期
相關(guān)會議論文 前10條
1 朱彤;桑恩方;;基于多載波傳輸?shù)乃曂ㄐ欧椒╗A];2004年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2004年
2 孟荻;王海斌;吳立新;汪俊;;隱蔽水聲通信技術(shù)探討[A];2008年全國聲學(xué)學(xué)術(shù)會議論文集[C];2008年
3 許肖梅;;水聲通信與水聲網(wǎng)絡(luò)的發(fā)展與應(yīng)用[A];2009年全國水聲學(xué)學(xué)術(shù)交流暨水聲學(xué)分會換屆改選會議論文集[C];2009年
4 吳清華;肖奇?zhèn)?夏至軍;;水聲通信及其軍事應(yīng)用研究[A];2009年全國水聲學(xué)學(xué)術(shù)交流暨水聲學(xué)分會換屆改選會議論文集[C];2009年
5 王長紅;朱敏;朱維慶;;相干與非相干水聲通信[A];面向21世紀(jì)的科技進步與社會經(jīng)濟發(fā)展(上冊)[C];1999年
6 吳碧;王毅剛;王華奎;;水聲通信中一種抗多途干擾的方法研究[A];中國聲學(xué)學(xué)會2009年青年學(xué)術(shù)會議[CYCA’09]論文集[C];2009年
7 馬曉民;楊曉帆;田路;;基于擴頻編碼的水聲通信技術(shù)研究[A];中國聲學(xué)學(xué)會2002年全國聲學(xué)學(xué)術(shù)會議論文集[C];2002年
8 汪俊;王海斌;吳立新;;水聲通信中的一種多信號恒包絡(luò)合成方法[A];2004年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2004年
9 莫世禹;;水聲通信[A];武漢市第二屆學(xué)術(shù)年會、通信學(xué)會2006年學(xué)術(shù)年會論文集[C];2006年
10 陳巖;賈寧;郭中源;陳庚;;全雙工水聲通信本地發(fā)射干擾自適應(yīng)抵消技術(shù)[A];中國聲學(xué)學(xué)會2006年全國聲學(xué)學(xué)術(shù)會議論文集[C];2006年
相關(guān)重要報紙文章 前3條
1 本報記者 王飛;蛟龍入海通天地 聽濤觀洋競風(fēng)流[N];科技日報;2013年
2 記者 石玉平;長城電子水聲通信設(shè)備達到國際先進水平[N];中國船舶報;2013年
3 曹洪亮 李麗云;解密神秘水下聲音世界水聲通信技術(shù)[N];科技日報;2006年
相關(guān)博士學(xué)位論文 前10條
1 孫琳;多輸入多輸出被動時反水聲通信技術(shù)研究[D];哈爾濱工程大學(xué);2016年
2 周琳;深遠海環(huán)境監(jiān)測水聲通信仿真方法與信道估計研究[D];中國海洋大學(xué);2011年
3 黃曉萍;基于混沌擴頻的水聲通信技術(shù)研究[D];哈爾濱工程大學(xué);2007年
4 朱彤;基于正交頻分復(fù)用的水聲通信技術(shù)研究[D];哈爾濱工程大學(xué);2004年
5 孫桂芝;水聲通信網(wǎng)絡(luò)路由協(xié)議研究[D];哈爾濱工程大學(xué);2006年
6 陳韻;分?jǐn)?shù)階Fourier變換在水聲通信中的應(yīng)用研究[D];哈爾濱工程大學(xué);2012年
7 尹艷玲;水聲通信網(wǎng)絡(luò)多載波通信與跨層設(shè)計[D];哈爾濱工程大學(xué);2016年
8 于洋;高效率水聲擴頻通信技術(shù)研究[D];哈爾濱工程大學(xué);2014年
9 李霞;水聲通信中的自適應(yīng)均衡與空間分集技術(shù)研究[D];哈爾濱工程大學(xué);2004年
10 王巍;MIMO-OFDM水聲通信關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 羅歡;基于本元信號時延調(diào)制的異步水聲通信方法[D];華南理工大學(xué);2015年
2 張續(xù)辰;水聲MIM0-OFDM系統(tǒng)中多普勒頻偏估計與補償?shù)难芯繎?yīng)用[D];昆明理工大學(xué);2015年
3 翟昌宇;波束形成技術(shù)及其在水聲通信中的應(yīng)用研究[D];上海交通大學(xué);2014年
4 李興國;一類帶乘性噪聲系統(tǒng)的參數(shù)故障檢測及其在水聲通信中的應(yīng)用[D];中國海洋大學(xué);2015年
5 朱路月;MIMO水聲通信空時編碼技術(shù)研究[D];東南大學(xué);2015年
6 于樂;水聲通信網(wǎng)絡(luò)節(jié)點設(shè)計[D];中北大學(xué);2016年
7 曲樂成;基于FPGA水聲通信調(diào)制解調(diào)系統(tǒng)的設(shè)計與實現(xiàn)[D];中國海洋大學(xué);2015年
8 王君迪;小型水域水下監(jiān)測通信平臺的設(shè)計及實驗[D];浙江大學(xué);2016年
9 李倫;基于參量陣的MFSK水聲通信關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2016年
10 丁鷺飛;稀疏貝葉斯學(xué)習(xí)理論在水聲通信多普勒估計中的應(yīng)用研究[D];江蘇科技大學(xué);2016年
,本文編號:2125066
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2125066.html