液相基底表面金屬納米結(jié)構(gòu)形成機(jī)理的計(jì)算機(jī)模擬
[Abstract]:In this paper, using the Monte Carlo simulation method, three computer models are established to simulate the formation process of many metal nanostructures on the surface of the liquid base, and the simulation results are compared with the experimental data to explain the formation mechanism. The simulation results are deeply analyzed and studied, and the different simulation parameters are obtained. The influence of the morphology, size distribution and growth mechanism of nanostructures, and suggestions for improving and guiding the experiment are proposed. In order to study the formation mechanism of clusters (including branched condensate and nanoparticle), according to the experimental results, we hypothesized that when the total number of particles in the cluster is larger than the critical size, the edge particles have a certain probability. The improved CCA model (RCCA model) is established. The simulation results show that with the increase of the diffusion step and the number of deposited particles, the number of up particles is increasing and the clusters change from two-dimensional to three-dimensional condensation. Statistics show that the coverage rate is from 0.02 ML to 0.22 ML, and the coverage rate is low (0.06ML), and the coverage rate is low (0.06ML). With the increase of the number of deposited particles, the number of deposited particles gradually deviates from the linear relationship between the coverage and the number of the deposited particles. This result is in line with the experimental data. With the increase of the number of particles and the diffusion step, the average height of the cluster increases and then gradually tends to saturation. The relationship between the number density of the cluster, the nominal deposition thickness and the coverage rate, we set up the cluster condensation and collapse model (CAC model). It is assumed that the cluster with a certain size has a certain collapse probability in the process of condensation. The simulation results show that the coverage rate is consistent with the experimental phase as the number of sedimentary particles increases. When the number of sedimentary particles is less, the size of the cluster is mostly not more than the critical size, and the coverage rate increases linearly with the number of deposited particles. When the number of sedimentary particles is further increased, the size of clusters is more than adjacent size, the volume collapse of clusters can occur randomly, and the size of the coverage rate oscillates a certain extent. In addition, the density of the average cluster increases gradually, and the density of all clusters gradually tends to the stable value. A new model (OCG model) is established by using the experimental facts that have the optimal growth direction in the process of crystal growth, which is used to study the formation mechanism of one dimensional zinc crystal on the surface of the liquid phase, and the simulation results are in agreement with the experimental facts. It is found that the length and width distribution of the one-dimensional crystal conform to the logarithmic normal distribution, which is in accordance with the results observed in the experiment. With the increase of the number of nucleation N, the length and width distribution peak gradually narrowed and relatively concentrated, and the average length and width are gradually reduced, and (1/N) 0.60 and (1/N) 0. respectively. The probability distribution of these one-dimensional crystals with different sizes is statistically analyzed. The results show that in general, the relatively longer or wider one-dimensional crystals have smaller probability of formation; but with the decrease of N, the formation probability of slender one-dimensional crystals increases. The chapters in this paper are arranged as follows: Chapter 1: first of all, a brief introduction is made. Traditional film preparation, characterization method and basic physical properties are introduced. The basic theories about atomic clusters, condensate and film growth mechanism are expounded. The latest progress in the research on the growth mechanism of thin film on various substrate surfaces is introduced. Then, the computer simulation research on the growth mechanism of thin films on different substrate surfaces is introduced. Finally, the main contents and significance of this paper are expounded. In the second chapter, on the basis of the CCA model, if the number of particles in the cluster is more than the critical size, its marginal particles move to the first layer in a certain probability, thus the improved CCA model is established. The cohesive mechanism of the polytransformation and the variation of the surface coverage rate and the average height with each parameter are studied. Third chapter: assuming that the cluster has a certain collapse probability after the critical size of the cluster, a non lattice condensation collapse model is established, and the variation of the coverage rate and the cluster density caused by the collapse are systematically studied. The fourth chapter: Based on the experimental fact that some crystals have preferential growth direction, a one-dimensional crystal growth model is established on the square lattice with periodic boundary conditions. The one-dimensional condensation mechanism of the atoms on the surface of the isotropic liquid base is explained and the length and width of such crystals are systematically analyzed. In the end, the prospect of the new growth mechanism in the future is prospected. In the fifth chapter, the results of this paper are summarized, and the future work and future research direction are prospected.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB383.1;TP391.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張婧瑜;朱彤;安巍;;四種金屬納米桿粒子輻射特性的對(duì)比分析[J];節(jié)能技術(shù);2013年01期
2 ;費(fèi)廣濤小組取得金屬納米線熱膨脹研究新進(jìn)展[J];光機(jī)電信息;2009年06期
3 陳婕;陳瑩;趙浩嵐;;基于周期性金屬納米結(jié)構(gòu)的全光開(kāi)關(guān)研究[J];光通信研究;2013年06期
4 楊盈瑩;張永亮;趙震聲;段宣明;;雙金屬納米天線在少周期激光中的寬帶超快電磁響應(yīng)[J];物理學(xué)報(bào);2012年01期
5 張敏;丁士進(jìn);陳瑋;張衛(wèi);;金屬納米晶快閃存儲(chǔ)器研究進(jìn)展[J];微電子學(xué);2007年03期
6 羅庭軍;萬(wàn)玲玉;黃繼欽;龐霖;張衛(wèi)平;;三角形金屬納米結(jié)構(gòu)的局域表面等離共振傳感特性與優(yōu)化分析[J];光學(xué)學(xué)報(bào);2013年05期
7 方明;宋開(kāi)宏;王娟娟;黃志祥;吳先良;;金屬納米柱天線的快速電磁分析[J];光子學(xué)報(bào);2014年03期
8 周朕;史林興;;金屬納米柵格薄膜等離激元太陽(yáng)能電池的優(yōu)化設(shè)計(jì)[J];激光與光電子學(xué)進(jìn)展;2012年11期
9 付建國(guó);;近紅外波段的金屬納米腔激光器[J];光機(jī)電信息;2009年11期
10 蔡積慶;;印刷電子用導(dǎo)電性油墨材料的開(kāi)發(fā)[J];印制電路信息;2013年01期
相關(guān)會(huì)議論文 前10條
1 王仲玨;;金屬納米變質(zhì)技術(shù)新進(jìn)展[A];2010年中國(guó)鑄造活動(dòng)周論文集[C];2010年
2 李志遠(yuǎn);;金屬納米微結(jié)構(gòu)和顆粒的表面等離子體共振[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
3 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計(jì)算機(jī)仿真與實(shí)驗(yàn)研究[A];第十二屆中國(guó)體視學(xué)與圖像分析學(xué)術(shù)會(huì)議論文集[C];2008年
4 李亞棟;;金屬納米催化[A];第六屆全國(guó)物理無(wú)機(jī)化學(xué)會(huì)議論文摘要集[C];2012年
5 李亞棟;;金屬納米催化[A];第十二屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
6 宋曉艷;張久興;李乃苗;高金萍;楊克勇;劉雪梅;;金屬納米晶和納米粒子材料熱力學(xué)特性的模擬計(jì)算與實(shí)驗(yàn)研究[A];2005年全國(guó)計(jì)算材料、模擬與圖像分析學(xué)術(shù)會(huì)議論文集[C];2005年
7 王樹(shù)林;李生娟;杜妍辰;徐波;李來(lái)強(qiáng);朱巖;;金屬納米結(jié)構(gòu)的干法室溫大規(guī)模制備[A];第八屆全國(guó)顆粒制備與處理學(xué)術(shù)和應(yīng)用研討會(huì)論文集[C];2007年
8 吳炳輝;陳光需;代燕;鄭南峰;;貴金屬納米晶的表界面調(diào)控[A];第十二屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年
9 郭霞;張巧;葉偉;謝芳;趙清;楊劍;;金基納米棒的選擇性腐蝕制備新穎多金屬納米結(jié)構(gòu)[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
10 童明良;劉俊良;冷際東;郭鵬虎;;系列4f/3d-4f金屬納米分子磁體的組裝與磁-構(gòu)關(guān)系研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前3條
1 本報(bào)記者 危麗瓊;雙金屬納米簇催化劑“1+1>2”[N];中國(guó)化工報(bào);2013年
2 張巍巍;美開(kāi)發(fā)出高度控制金屬納米結(jié)構(gòu)的方法[N];科技日?qǐng)?bào);2012年
3 記者 毛黎;碳納米管與金屬納米導(dǎo)線成功連接[N];科技日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 孫明斐;異常一維金屬納米結(jié)構(gòu)彈性及塑性的分子動(dòng)力學(xué)模似表征[D];復(fù)旦大學(xué);2014年
2 李楠庭;石墨烯負(fù)載金屬納米結(jié)構(gòu)的制備及性能表征[D];南京大學(xué);2015年
3 宋瑋;多肽/金屬納米簇的制備及其用于生物分析檢測(cè)研究[D];南昌大學(xué);2015年
4 伍鐵生;基于金屬納米結(jié)構(gòu)的光傳輸特性及其應(yīng)用研究[D];北京郵電大學(xué);2015年
5 王超;Ir基貴金屬納米晶制備及其催化性質(zhì)研究[D];吉林大學(xué);2016年
6 武振楠;基于金屬納米點(diǎn)的超薄二維組裝結(jié)構(gòu)構(gòu)筑[D];吉林大學(xué);2016年
7 吳菲菲;金屬納米結(jié)構(gòu)的構(gòu)筑及其在傳感中的應(yīng)用[D];吉林大學(xué);2016年
8 程毅;液相基底表面金屬納米結(jié)構(gòu)形成機(jī)理的計(jì)算機(jī)模擬[D];浙江大學(xué);2016年
9 夏良平;基于金屬納米結(jié)構(gòu)的納光子器件研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2014年
10 古楊;基于局域表面等離激元共振的金屬納米結(jié)構(gòu)折射率傳感[D];武漢大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 祝國(guó)民;原位液體透射電鏡芯片的研發(fā)及基于此技術(shù)的貴金屬納米晶生長(zhǎng)和刻蝕研究[D];浙江大學(xué);2015年
2 倪媛;貴金屬納米結(jié)構(gòu)的可控合成及其光熱效應(yīng)研究[D];南京航空航天大學(xué);2015年
3 楊榮;貴金屬納米晶合成及其性能研究[D];浙江理工大學(xué);2015年
4 吳佳;基于金屬納米簇的光學(xué)分析方法研究[D];陜西師范大學(xué);2015年
5 趙婷;貴金屬納米結(jié)構(gòu)的消光特性研究[D];陜西師范大學(xué);2015年
6 蔡正杰;表面等離激元誘導(dǎo)的金屬納米寬單頻帶和窄多頻帶光透明特征研究[D];江西師范大學(xué);2015年
7 韓淑華;中空、多孔貴金屬納米結(jié)構(gòu)的構(gòu)筑及其機(jī)理、性能研究[D];溫州大學(xué);2015年
8 沈琪;金屬納米顆粒陣列的局域表面等離激元共振研究[D];南京大學(xué);2014年
9 王婧;金屬納米結(jié)構(gòu)在超寬帶電磁波中的局域增強(qiáng)特性及應(yīng)用研究[D];電子科技大學(xué);2014年
10 劉花;熒光性的金屬納米簇合成及傳感性能研究[D];浙江師范大學(xué);2015年
,本文編號(hào):2129416
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2129416.html