新型鉍基納米粒子用于放射治療增強
發(fā)布時間:2024-09-17 16:08
放射療法是一種眾所周知的非侵入性治療方法,臨床中超過50%的癌癥患者采用放療手段。在理想的放射療法中,在腫瘤內(nèi)接受放療劑量,同時周圍的健康組織能夠免受輻射損傷。為了實現(xiàn)這一目標,可以通過與納米醫(yī)學(xué)相結(jié)合來改善放射療法。納米顆粒是一種非活性物理放射增敏劑,在腫瘤部位,納米顆粒周圍的沉積輻射劑量會局部增加。最近,具有診斷和治療功能的鉍基納米顆粒由于高原子序數(shù),低毒性和低成本作為放射治療和成像中的治療劑引起了廣泛的關(guān)注。在這項研究中,我們引入了新的多功能鉍基納米粒子,鉍鐵氧體(BFO)和氧化鉍釓(Bi Gd O3)納米粒子作為放射治療和成像的放射增敏劑。用溶膠-凝膠法合成了納米粒子。在合成納米顆粒并用PEG對其進行表面修飾后,通過CCK-8測定評估納米顆粒的生物相容性。通過體外(克隆形成實驗和CCk-8測試),體內(nèi)和凝膠劑量測定評估BFO和Bi Gd O3納米顆粒對放射治療中的輻射劑量增強的影響。使用具有的4T1乳腺癌BALB/c雌性荷瘤鼠進行體內(nèi)癌癥放射療。用于MR和CT圖像的體模研究的弛豫時間(R2)和CT值(HU)顯示出與納米顆粒和濃度的線性關(guān)...
【文章頁數(shù)】:120 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
ABBREVIATION
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Problems and significances
1.3 Radiation therapy
1.3.1 External radiation therapy
1.3.2 Internal Radiation Therapy-Brachytherapy
1.4 Interaction of photon with matter
1.4.1 Photoelectric effect
1.4.2 Compton scattering
1.4.3 Pair Production
1.5 Nanoparticles in medicine
1.5.1 Toxicity of nanoparticles
1.5.2 Enhanced radiation dose by high atomic number nanoparticles
1.5.3 Gold nanoparticles
1.5.4 Bismuth nanoparticles
1.5.5 Gadolinium nanoparticles
1.5.6 Delivery of nanoparticles and drug in tumor
1.6 Research contents in this study
CHAPTER 2 EXPERIMENTAL PROCEDUR
2.1 Synthesis and characterization nanoparticles
2.1.1 Materials
2.1.2 Synthesis and characterization of BFO nanoparticles
2.1.3 Synthesis and characterization of BiGd03 nanoparticles
2.2 Gel dosimetry
2.3 Biological experiment-(in vitro,in vivo)
2.3.1 Cancer cell lines
2.3.2 Cell culture
2.3.3 The cytotoxicity of the nanoparticles
2.3.4 Clonogenic assay
2.3.5 In vitro radiotherapy (BFO nanoparticles)
2.4 In vivo experiment (BiGdO3-PEG nanoparticles)
2.5 MRI and CT imaging
2.6 Inductive Heating Property
2.7 Statistical analysis
CHAPTER 3 BISMUTH FERRITE NANOPARTICLES AS RADIOSENSITIZER
3.1 Introduction
3.2 Characterization of synthesized nanoparticles (BFO)
3.3 In vitro experiment results
3.3.1 Biocompatibility (BFO-NPs)
3.3.2 In vitro-radiosensitization
3.4 Gel results
3.5 Imaging results
3.5.1 T_2 MR imaging
3.5.2 CT imaging
3.6 Inductive heating property
3.7 BFO nanoparticles-loaded brachytherapy spacer
3.8 Discussion
3.9 Conclusion
CHAPTER 4 BISMUTH GADOLINIUM OXIDE NANOPARTICLES ASRADIOSENSITIZER
4.1 Introduction
4.2 Characterization of synthesized nanoparticles (BiGdO_3)
4.3 In vitro experiment-BiGdO_3 nanoparticles
4.3.1 In vitro Biocompatibility
4.3.2 In vitro radiosensitizing results-BiGdO_3
4.4 Gel dosimetry results-BiGdO_3
4.5 In vivo results-BiGdO_3
4.6 Imaging-phantom and in vivo results-BiGdO_3
4.6.1 MRI
4.6.2 CT
4.7 Discussion
4.8 Conclusion
CHAPTER 5 BISMUTH- BASED NANOPARTICLES ASRADIOSENSITIZER
5.1 Introduction
5.2 Brachytherapy sources
5.3 Monte Carlo simulations
5.3.1 Calculation of TG-43 parameters
5.4 Nanoparticles dose enhancement-simulation
5.4.1 MCNP-Monte Carlo
5.4.2 Analytical simulation
5.5 Validation of radiation sources-MCNP
5.6 Radiation Dose Enhancement-Results
5.6.1 MCNP code
5.6.2 Analytical method
5.7 Discussion
5.8 Conclusions
CHAPTER 6 CONCLUSION
6.1 Thesis conclusion
6.2 Study innovation
REFERENCES
ACKNOWLEDGMENT
RESUME /PUBLICATINS
本文編號:4005702
【文章頁數(shù)】:120 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
ABBREVIATION
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Problems and significances
1.3 Radiation therapy
1.3.1 External radiation therapy
1.3.2 Internal Radiation Therapy-Brachytherapy
1.4 Interaction of photon with matter
1.4.1 Photoelectric effect
1.4.2 Compton scattering
1.4.3 Pair Production
1.5 Nanoparticles in medicine
1.5.1 Toxicity of nanoparticles
1.5.2 Enhanced radiation dose by high atomic number nanoparticles
1.5.3 Gold nanoparticles
1.5.4 Bismuth nanoparticles
1.5.5 Gadolinium nanoparticles
1.5.6 Delivery of nanoparticles and drug in tumor
1.6 Research contents in this study
CHAPTER 2 EXPERIMENTAL PROCEDUR
2.1 Synthesis and characterization nanoparticles
2.1.1 Materials
2.1.2 Synthesis and characterization of BFO nanoparticles
2.1.3 Synthesis and characterization of BiGd03 nanoparticles
2.2 Gel dosimetry
2.3 Biological experiment-(in vitro,in vivo)
2.3.1 Cancer cell lines
2.3.2 Cell culture
2.3.3 The cytotoxicity of the nanoparticles
2.3.4 Clonogenic assay
2.3.5 In vitro radiotherapy (BFO nanoparticles)
2.4 In vivo experiment (BiGdO3-PEG nanoparticles)
2.5 MRI and CT imaging
2.6 Inductive Heating Property
2.7 Statistical analysis
CHAPTER 3 BISMUTH FERRITE NANOPARTICLES AS RADIOSENSITIZER
3.1 Introduction
3.2 Characterization of synthesized nanoparticles (BFO)
3.3 In vitro experiment results
3.3.1 Biocompatibility (BFO-NPs)
3.3.2 In vitro-radiosensitization
3.4 Gel results
3.5 Imaging results
3.5.1 T_2 MR imaging
3.5.2 CT imaging
3.6 Inductive heating property
3.7 BFO nanoparticles-loaded brachytherapy spacer
3.8 Discussion
3.9 Conclusion
CHAPTER 4 BISMUTH GADOLINIUM OXIDE NANOPARTICLES ASRADIOSENSITIZER
4.1 Introduction
4.2 Characterization of synthesized nanoparticles (BiGdO_3)
4.3 In vitro experiment-BiGdO_3 nanoparticles
4.3.1 In vitro Biocompatibility
4.3.2 In vitro radiosensitizing results-BiGdO_3
4.4 Gel dosimetry results-BiGdO_3
4.5 In vivo results-BiGdO_3
4.6 Imaging-phantom and in vivo results-BiGdO_3
4.6.1 MRI
4.6.2 CT
4.7 Discussion
4.8 Conclusion
CHAPTER 5 BISMUTH- BASED NANOPARTICLES ASRADIOSENSITIZER
5.1 Introduction
5.2 Brachytherapy sources
5.3 Monte Carlo simulations
5.3.1 Calculation of TG-43 parameters
5.4 Nanoparticles dose enhancement-simulation
5.4.1 MCNP-Monte Carlo
5.4.2 Analytical simulation
5.5 Validation of radiation sources-MCNP
5.6 Radiation Dose Enhancement-Results
5.6.1 MCNP code
5.6.2 Analytical method
5.7 Discussion
5.8 Conclusions
CHAPTER 6 CONCLUSION
6.1 Thesis conclusion
6.2 Study innovation
REFERENCES
ACKNOWLEDGMENT
RESUME /PUBLICATINS
本文編號:4005702
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/yxlbs/4005702.html
最近更新
教材專著