自感知自供能磁流變阻尼器及其控制系統(tǒng)研究
[Abstract]:Magnetorheological damper has become a new generation of high performance vibration damping device for the new generation of structural vibration control because of its advantages of low energy consumption, large output and quick response. At present, magnetorheological damper has made great progress in theory and test research, but the magnetorheological control system needs to be equipped with power supply, sensors and controllers. In order to solve the problem of additional equipment, this paper uses photoelectric sensor to realize self sensing of magnetorheological damper, using piezoelectric energy collecting structure or magnetoelectric energy collection structure to realize self supply and related technology to its related technology. The specific research work is as follows: (1) considering the problems of magnetic electric velocity self sensing structure, such as magnetic leakage, large volume, uneasy integration and poor high-speed downline degree, based on the working principle of the optoelectronic mouse, a photoelectric sensor with low energy consumption, small volume and easy integration is designed to realize the non contact of the speed of the damper piston rod. The measurement method of the average velocity is used to replace the instantaneous velocity, and the relative error of the velocity measurement caused by the method is analyzed theoretically. The validity of the photoelectric speed self sensing unit is verified by the sample preparation and the performance test. The self sensing unit and the damper are integrated to build the speed self sensing magnetorheological control system. The output characteristics of the damper under the speed self feedback control strategy are analyzed. The results show that the actual damping force of the self sensing damper can basically track the theoretical damping force, but it is slightly lagging behind the theoretical damping force in the phase. (2) the large amplitude of the damping force can be achieved in the view of the magnetorheological damper only a number of watts of electrical energy is needed. With the combination of the new energy piezoelectric technology and the magnetorheological control technology, a piezoelectric self supplying energy magnetorheological control system is proposed. Based on the improvement of the simple Bang-Bang control strategy, the control strategy of the piezoelectric self supplying energy system is put forward. The design method of the piezoelectric energy collecting device is put forward based on the deformation coordination and the energy demand. In Binzhou, the design method of the piezoelectric energy collecting device is put forward. As an example of the N26 prototype cable vibration damping system of the the Yellow River bridge and the 1 five storey building isolation system, the feasibility and effectiveness of the piezoelectric self supply control system are verified by design and simulation. (3) under the condition of low frequency and high amplitude load, three layers of different number of piezoelectric reactors (section area of 32 x 32mm2), such as 50 layers and 80 layers, are made under the condition of low frequency and high amplitude load. The external resistance is tested in two states, and the variation law of the voltage coefficient and power output characteristic with the prestress stress, the excitation frequency and the amplitude of the pressure stress is studied. There is a limit value in the preloading stress of the PZT set, which is higher than that of the limit value piezoelectric device. The energy demand of the magnetorheological damper with the maximum output of 1t is designed. According to the test results, the feasibility analysis of the power and impedance matching is carried out. It is found that the power demand of the damper can be realized, but the impedance matching still has problems. (4) in view of the shortage of the existing magnetorheological damper, the ball screw and the rotating permanent magnet are based on the shortcomings of the existing magnetorheological damper. A new type of magnetorheological damper with high integration level is put forward in magnetic DC generator. Considering the effect of eddy current and material hysteresis on magnetization current, this kind of damper is analyzed theoretically and its mechanical model is established. The system is tested and analyzed by the system of the prototype machine with the maximum output of 10K N. The electrical and mechanical characteristics of the proposed damper vary with the external excitation, and the theoretical model is identified and corrected according to the experimental results. (5) a new type of self supplying energy magnetorheological control system is constructed based on the magnetorheological self supplying energy magnetorheological damper, and the passive adaptive control strategy for the system has been adopted. The passive control strategy and the semi-active control strategy are compared and analyzed. The design method of the damper parameters in the system is presented with the maximum control force equality criterion, the maximum power demand criterion and the control index optimization criterion. The design and analysis of a 5 storey building isolation model are carried out, and the feasibility of the design method is verified. The parameters of the system are analyzed, and the effectiveness of the control system is verified by comparing the control effects of different control strategies.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB535
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫偉,胡海巖;基于多級磁流變阻尼器的操縱面振動半主動抑制——阻尼器設(shè)計與試驗建模[J];振動工程學(xué)報;2005年01期
2 王昊;胡海巖;;磁流變阻尼器的模糊逼近[J];振動工程學(xué)報;2006年01期
3 王代華;袁剛;李一平;;一種磁流變阻尼器的阻尼器控制器的實驗測試[J];功能材料;2006年07期
4 沙凌鋒;徐趙東;李愛群;郭迎慶;;磁流變阻尼器的設(shè)計與分析[J];工業(yè)建筑;2008年03期
5 田靜;何軍;祝世興;;基于模糊理論的磁流變阻尼器控制[J];液壓與氣動;2008年10期
6 王昊;史小梅;;磁流變阻尼器的磁場分析[J];液壓與氣動;2009年12期
7 馬新娜;楊紹普;劉曉星;葛占勝;;磁流變阻尼器系統(tǒng)的非線性動力學(xué)分析[J];振動與沖擊;2011年06期
8 李占衛(wèi);鄭建國;;磁流變阻尼器間隙結(jié)構(gòu)對阻尼器性能的影響[J];四川兵工學(xué)報;2011年05期
9 許利利;;基于磁流變阻尼器的結(jié)構(gòu)振動特性研究[J];中國新技術(shù)新產(chǎn)品;2011年20期
10 徐海鵬;張紅輝;余昭;;單出桿磁流變阻尼器特性影響因素及其附加剛度研究[J];機(jī)械設(shè)計與研究;2011年06期
相關(guān)會議論文 前10條
1 馬新娜;楊紹普;陳恩利;錢濤;;磁流變阻尼器系統(tǒng)的非線性動力學(xué)分析[A];第十二屆全國非線性振動暨第九屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議論文集[C];2009年
2 田靜;何軍;祝世興;;基于模糊理論的磁流變阻尼器控制[A];第五屆全國流體傳動與控制學(xué)術(shù)會議暨2008年中國航空學(xué)會液壓與氣動學(xué)術(shù)會議論文集[C];2008年
3 張海為;程亞鵬;林慶立;;安裝磁流變阻尼器控制系統(tǒng)的控制效果分析[A];建筑結(jié)構(gòu)高峰論壇——復(fù)雜建筑結(jié)構(gòu)彈塑性分析技術(shù)研討會論文集[C];2012年
4 涂奉臣;陳照波;李華;焦映厚;黃文虎;;一種改進(jìn)型磁流變阻尼器用于寬頻隔振研究[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集[C];2007年
5 涂奉臣;陳照波;李華;焦映厚;黃文虎;;一種改進(jìn)型磁流變阻尼器用于寬頻隔振研究[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文摘要集[C];2007年
6 張祥金;沈娜;;基于磁流變阻尼器的主動變阻尼減振控制系統(tǒng)設(shè)計[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
7 孫偉;胡海巖;;基于多級磁流變阻尼器的操縱面振動半主動抑制[A];第七屆全國非線性動力學(xué)學(xué)術(shù)會議和第九屆全國非線性振動學(xué)術(shù)會議論文集[C];2004年
8 王昊;胡海巖;;基于磁流變阻尼器整車半主動懸架的開關(guān)控制[A];第七屆全國非線性動力學(xué)學(xué)術(shù)會議和第九屆全國非線性振動學(xué)術(shù)會議論文集[C];2004年
9 孫清;伍曉紅;胡志義;;磁流變阻尼器控制結(jié)構(gòu)地震反應(yīng)的振動臺試驗研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2005論文摘要集(下)[C];2005年
10 肖志榮;孫炳楠;;磁流變阻尼器的一種智能模型[A];第17屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅲ冊)[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 黃永虎;自感知自供能磁流變阻尼器及其控制系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 王強(qiáng);新型磁流變阻尼器與六軸半主動隔振系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 劉建軍;新型磁流變阻尼器及其智能控制方法研究[D];天津大學(xué);2008年
4 張莉潔;沖擊載荷下磁流變阻尼器動態(tài)特性分析及其控制系統(tǒng)設(shè)計[D];南京理工大學(xué);2008年
5 黃繼;含磁流變阻尼器自動武器緩沖系統(tǒng)控制理論與技術(shù)的研究[D];中北大學(xué);2011年
6 張紅輝;磁偏置內(nèi)旁通式磁流變阻尼器研究[D];重慶大學(xué);2006年
7 蔣學(xué)爭;自供能磁流變阻尼器的振動能量捕獲技術(shù)研究[D];南京理工大學(xué);2012年
8 史鵬飛;磁流變阻尼器的擬負(fù)剛度控制及實時混合試驗方法[D];哈爾濱工業(yè)大學(xué);2011年
9 付杰;負(fù)剛度磁流變阻尼器減震系統(tǒng)的理論與實驗研究[D];華中科技大學(xué);2014年
10 涂奉臣;基于磁流變阻尼器的整星半主動隔振技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 周龍亭;自供能磁流變阻尼器原理及其能量管理電路研究[D];重慶大學(xué);2011年
2 李占衛(wèi);磁流變阻尼器的結(jié)構(gòu)和性能研究[D];南京理工大學(xué);2012年
3 楊濤;面向病理性震顫抑震的磁流變阻尼器的研制[D];哈爾濱工業(yè)大學(xué);2012年
4 蔡路;磁流變阻尼器設(shè)計、仿真與試驗研究[D];西南交通大學(xué);2015年
5 李仕游;基于磁流變阻尼器的汽車懸架半主動控制的研究[D];西南交通大學(xué);2015年
6 張猛;基于磁流變阻尼器的汽車半主動座椅懸架研究[D];長安大學(xué);2015年
7 王锎;基于磁流變阻尼器的轉(zhuǎn)子振動控制研究[D];北京化工大學(xué);2015年
8 袁秋玲;基于磁流變阻尼器的船舶隔振系統(tǒng)動力學(xué)特性研究[D];江蘇科技大學(xué);2015年
9 董其明;結(jié)構(gòu)振動控制實驗系統(tǒng)設(shè)計[D];大連理工大學(xué);2015年
10 張瑞靜;爆胎車輛動力學(xué)穩(wěn)定性控制仿真研究[D];山東理工大學(xué);2014年
,本文編號:2160686
本文鏈接:http://www.wukwdryxk.cn/guanlilunwen/gongchengguanli/2160686.html