原位納米TiC_x顆粒增強(qiáng)銅基復(fù)合材料組織與性能研究
本文選題:燃燒合成 + 銅基復(fù)合材料。 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:銅及銅合金以其優(yōu)異的導(dǎo)電導(dǎo)熱性、良好的耐腐蝕性和延展性成為工業(yè)發(fā)展中不可替代的金屬材料。然而銅的強(qiáng)度和硬度低,常溫和高溫耐磨性差,阻礙了銅材料的進(jìn)一步開發(fā)和利用。為滿足高速發(fā)展的工業(yè)對銅及銅合金提出的更高要求,研究者們開發(fā)了很多強(qiáng)化銅及銅合金的新方法。其中,向銅基體中添加陶瓷顆粒不僅可以顯著提高銅基體的力學(xué)性能,還可以減小銅基體導(dǎo)電導(dǎo)熱性的降低,使銅基復(fù)合材料兼具陶瓷顆粒的高強(qiáng)度和銅基體的良好的導(dǎo)電導(dǎo)熱性。目前報道的向銅基體中引入的陶瓷顆粒大部分是微米尺寸,而鋁、鎂基復(fù)合材料的研究結(jié)果證明,尺寸較小的陶瓷顆粒對基體的強(qiáng)化效果更加明顯,因此,研究納米尺寸的陶瓷顆粒增強(qiáng)銅基復(fù)合材料十分必要。陶瓷顆粒加入到金屬基體中的方式分為外加法和原位內(nèi)生法,與外加法相比,原位內(nèi)生法不僅可以生成尺寸細(xì)小且彌散分布的陶瓷顆粒,還能減少陶瓷顆粒的表面污染,提高增強(qiáng)顆粒與銅基體的界面結(jié)合強(qiáng)度,已經(jīng)成為制備納米尺寸陶瓷顆粒增強(qiáng)銅基復(fù)合材料的首選方法。本文以Cu-Ti-C為反應(yīng)體系,采用燃燒合成與熱壓相結(jié)合的制備工藝,成功制備出了原位納米Ti C_x/Cu復(fù)合材料。探究了Ti C_x含量和C/Ti摩爾比對Ti C_x/Cu復(fù)合材料的增強(qiáng)顆粒尺寸形貌、組織結(jié)構(gòu)、室溫壓縮性能和導(dǎo)電性能的影響及機(jī)制,探究了Ti C_x含量和C/Ti摩爾比對Ti C_x/Cu復(fù)合材料室溫磨損性能的影響,研究了溫度和施加載荷對30vol.%Ti C_x/Cu復(fù)合材料高溫磨損性能的影響,并討論了30vol.%Ti C_x/Cu復(fù)合材料在高溫時的磨損機(jī)制。本論文的主要結(jié)論有:(1)隨著Ti C_x含量的增加,Ti C_x/Cu復(fù)合材料中Ti C_x顆粒尺寸增大,復(fù)合材料的屈服強(qiáng)度和最大壓縮強(qiáng)度先增大后減小,斷裂應(yīng)變先減小后增大,當(dāng)Ti C_x含量為30vol.%時,復(fù)合材料的壓縮性能最好,屈服強(qiáng)度為495MPa,最大壓縮強(qiáng)度為969MPa,斷裂應(yīng)變?yōu)?.88%。彌散分布的納米Ti C_x顆粒通過Orowan機(jī)制,阻礙位錯運(yùn)動從而強(qiáng)化Cu基體,然而,Ti C_x顆粒尺寸的增大減弱了對基體的強(qiáng)化作用,復(fù)合材料的壓縮性能隨之降低。隨著陶瓷含量由25vol.%增加至35vol.%,Ti C_x/Cu復(fù)合材料的導(dǎo)電率由48%IACS降低至40%IACS。(2)隨著C/Ti摩爾比的增加,30vol.%Ti C_x/Cu復(fù)合材料中Ti C_x陶瓷顆粒尺寸幾乎不變,但陶瓷顆粒的分布由均勻變?yōu)樯倭繄F(tuán)聚。復(fù)合材料的屈服強(qiáng)度和最大壓縮強(qiáng)度減=小,斷裂應(yīng)變增加。這主要是由于C/Ti摩爾比越小,Ti C_x陶瓷的金屬性越強(qiáng),與Cu基體的潤濕性提高,在基體中的分布更加均勻,與Cu的界面結(jié)合強(qiáng)度更高。而且,剩余的Ti原子固溶在Cu基體內(nèi),對材料起到固溶強(qiáng)化的作用。當(dāng)C/Ti摩爾比為0.4時,30vol.%Ti C_x/Cu復(fù)合材料的壓縮性能最高,屈服強(qiáng)度為1110MPa,最大壓縮強(qiáng)度為1288MPa,斷裂應(yīng)變?yōu)?.91%。同時,隨著C/Ti摩爾比由0.4增加至1.2,材料的導(dǎo)電率由18%IACS增加至49%IACS。(3)隨著納米Ti C_x含量的增加,Ti C_x/Cu復(fù)合材料的室溫體積磨損率先減小后增加,當(dāng)Ti C_x含量為30vol.%時,復(fù)合材料的耐磨性最好。Ti C_x/Cu復(fù)合材料耐磨性的變化與復(fù)合材料硬度的變化規(guī)律一致。(4)隨著C/Ti摩爾比的增加,30vol.%Ti C_x/Cu復(fù)合材料的室溫體積磨損率增加。當(dāng)C/Ti摩爾比0.4時,復(fù)合材料的耐磨性最好。雖然復(fù)合材料中的Ti C_x陶瓷含量相同,但隨著C/Ti摩爾比的增加,固溶在Cu基體中的Ti原子減少,固溶強(qiáng)化效果越來越弱,復(fù)合材料的硬度降低,磨粒刺入復(fù)合材料表面的深度大大增加,導(dǎo)致磨損性能下降。(5)揭示出納米Ti C_x顆粒對30vol.%Ti C_x/Cu復(fù)合材料高溫磨擦磨損性能的影響規(guī)律及作用機(jī)制。ⅰ)隨著溫度的增加,純Cu和30vol.%Ti C_x/Cu復(fù)合材料的磨損率先降低后升高,30vol.%Ti C_x/Cu復(fù)合材料的磨損率始終低于純Cu的磨損率。由于Ti C_x陶瓷具有高溫穩(wěn)定性,因此,在高溫下依然能夠起到彌散強(qiáng)化的效果,使復(fù)合材料的高溫性能高于純Cu。180℃時復(fù)合材料磨損率最低,主要原因是與常溫相比,高溫時磨損表面的氧化膜厚度增加,對表面的保護(hù)作用增強(qiáng),降低了復(fù)合材料的磨損率。當(dāng)磨損溫度為220℃時,復(fù)合材料發(fā)生軟化,不能支撐表面的MML,形成了大量臺階狀剝落層,磨損率增加。ⅱ)揭示出本實(shí)驗(yàn)條件下30vol.%Ti C_x/Cu復(fù)合材料的高溫磨損機(jī)制。當(dāng)溫度≤180℃時,復(fù)合材料的磨損方式主要為磨粒磨損、輕微的粘著磨損和氧化磨損;當(dāng)溫度達(dá)到220℃時,復(fù)合材料的磨損機(jī)制為剝落磨損、氧化磨損和磨粒磨損。ⅲ)隨著載荷的增加30vol.%Ti C_x/Cu復(fù)合材料在220℃下的磨損率逐漸增加。220℃時,純Cu的臨界載荷為20N,而30vol.%Ti C_x/Cu復(fù)合材料的臨界載荷為30N,說明納米Ti C_x顆粒的加入在高溫下也能有效的緩解材料的軟化,提高材料的耐磨損性能。
[Abstract]:Copper and copper alloys have become an irreplaceable metal material in industrial development because of their excellent conductivity and conductivity, good corrosion resistance and ductility. However, the low strength and hardness of copper and poor wear resistance at normal temperature and high temperature have hindered the further development and utilization of copper materials. The researchers have developed a lot of new methods to strengthen copper and copper alloys. The addition of ceramic particles to copper matrix can not only significantly improve the mechanical properties of copper matrix, but also reduce the thermal conductivity of copper matrix. The copper matrix composites have both high strength of ceramic particles and good conductive and thermal conductivity of copper matrix. Most of the ceramic particles introduced in the copper matrix previously reported in the copper matrix are micron sizes, and the results of aluminum and magnesium matrix composites have proved that the smaller size ceramic particles are more effective for strengthening the matrix. Therefore, it is necessary to study the nano sized ceramic particles to enhance the copper matrix composite material. The method can be divided into addition method and in-situ method. In comparison with the external addition method, the in-situ endogenous method can not only produce ceramic particles with small size and dispersed distribution, but also reduce the surface pollution of ceramic particles and enhance the interfacial bonding strength of the reinforced particles and the copper matrix. It has become the preparation of nano sized ceramic particle reinforced copper matrix composites. The first choice method. In this paper, in this paper, the in-situ nano Ti C_x/Cu composite was successfully prepared by using Cu-Ti-C as the reaction system. The in-situ nano Ti C_x/Cu composite was prepared. The influence of the content of C_x and the molar ratio of C/Ti on the particle size and morphology of the Ti C_x/Cu composite, the microstructure, the room temperature compression properties and the electrical conductivity were investigated. The effect of Ti C_x content and C/Ti molar ratio on the wear properties of Ti C_x/Cu composites at room temperature was investigated. The effects of temperature and loading charge on the high temperature wear properties of 30vol.%Ti C_x/Cu composites were studied. The wear mechanism of 30vol.%Ti C_x/Cu composite materials at high temperature was discussed. The main conclusions of this paper are as follows: (1) along with Ti C_x content The size of Ti C_x particles in Ti C_x/Cu composites increases, the yield strength and maximum compressive strength of the composite increase first and then decrease, and the fracture strain decreases first and then increases. When the content of Ti C_x is 30vol.%, the compressive properties of the composites are the best, the yield strength is 495MPa, the maximum compressive strength is 969MPa, and the fracture strain is 6.88%. dispersion. The distributed nano Ti C_x particles obstruct the dislocation motion and strengthen the Cu matrix through the Orowan mechanism. However, the increase of the Ti C_x particle size decreases the strengthening effect on the matrix, and the compression performance of the composite decreases. As the content of the ceramics increases from 25vol.% to 35vol.%, the conductivity of the Ti C_x/ Cu composite is reduced from 48%IACS to 35vol.%. 2) with the increase of C/Ti molar ratio, the size of Ti C_x ceramic particles in the 30vol.%Ti C_x/Cu composite is almost constant, but the distribution of ceramic particles varies from uniform to a small amount of agglomeration. The yield strength and the maximum compressive strength of the composites are smaller, and the fracture strain increases. This is mainly due to the smaller the C/ Ti molar ratio, the stronger the metallicity of the Ti C_x ceramics, and the C of the C. The wettability of u matrix is increased, the distribution in the matrix is more uniform, and the bonding strength is higher with the interface of Cu. Moreover, the remaining Ti atoms are solid solution in the Cu base, which can strengthen the solid solution. When the molar ratio of C/Ti is 0.4, the compressive properties of the 30vol.%Ti C_x/Cu composites are the highest, the yield strength is 1110MPa, and the maximum compressive strength is 1288. MPa, the fracture strain is 4.91%., and with the increase of C/Ti molar ratio from 0.4 to 1.2, the conductivity of the material increases from 18%IACS to 49%IACS. (3). With the increase of Ti C_x content, the room temperature volume wear of Ti C_x/Cu composites decreases first and then increases. When Ti C_x is the 30vol.%, the wear resistance of the composites is the best. The change of wear resistance is the same as that of composite material. (4) the wear resistance of 30vol.%Ti C_x/Cu composites increases with the increase of C/Ti molar ratio. When C/Ti molar ratio is 0.4, the wear resistance of the composites is the best. Although the Ti C_x ceramics in the composites contain the same content, with the increase of the C/Ti molar ratio, the solid solution is in Cu The reduction of Ti atoms in the matrix, the strengthening effect of solid solution is getting weaker, the hardness of the composite is reduced, the depth of the abrasive particles is added to the surface of the composite material is greatly increased and the wear property is reduced. (5) the effect of nano Ti C_x particles on the high temperature friction and wear properties of 30vol.%Ti C_x/Cu composites and its mechanism are revealed. The wear rate of pure Cu and 30vol.%Ti C_x/Cu composites increases first and the wear rate of 30vol.%Ti C_x/Cu composites is always lower than that of pure Cu. As Ti C_x ceramics have high temperature stability, the effect of dispersion strengthening can still be achieved at high temperature, and the high temperature properties of the composites are higher than that of pure Cu.180. The wear rate of the composite is the lowest, the main reason is that compared with the normal temperature, the oxide film thickness of the worn surface increases, the protective effect on the surface is enhanced and the wear rate of the composite is reduced. When the wear temperature is 220 C, the composite material softens, can not support the surface of MML, forms a large number of step like peeling layer, and the wear rate increases.) The high temperature wear mechanism of 30vol.%Ti C_x/Cu composites under the present experimental conditions is revealed. When the temperature is less than 180 C, the wear mode of the composites is mainly abrasive wear, slight adhesive wear and oxidation wear. When the temperature reaches 220, the wear mechanism of the composites is peeling wear, oxidation wear and abrasive wear. III) along with the load When the wear rate of 30vol.%Ti C_x/Cu composites increases at 220 degrees C, the critical load of pure Cu is 20N, and the critical load of 30vol.%Ti C_x/Cu composite is 30N. It shows that the addition of nano Ti C_x particles can effectively alleviate the softening of the material and improve the wear resistance of the material at high temperature.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB333
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾立英;銅基復(fù)合材料的應(yīng)用[J];稀有金屬快報;2001年09期
2 曾立英 ,孫洪志;銅基復(fù)合材料的應(yīng)用[J];稀有金屬快報;2001年11期
3 劉濤;酈劍;凌國平;范景蓮;;顆粒增強(qiáng)銅基復(fù)合材料研究進(jìn)展[J];材料導(dǎo)報;2004年04期
4 湛永鐘;非連續(xù)增強(qiáng)銅基復(fù)合材料的研究現(xiàn)狀[J];材料開發(fā)與應(yīng)用;2005年04期
5 張修慶;徐祖豪;鄧鑒棋;葉以富;;銅基復(fù)合材料的制備方法與工藝[J];熱加工工藝;2007年06期
6 朱玉龍,翟啟杰,黃衛(wèi)華,肖勁,劉學(xué)琴;鋼顆粒增強(qiáng)銅基復(fù)合材料的界面和傳導(dǎo)性[J];特種鑄造及有色合金;2000年01期
7 樓白楊,陳利,樓程華;銅基復(fù)合材料熱敏性的探討[J];云南大學(xué)學(xué)報(自然科學(xué)版);2002年S1期
8 湛永鐘,張國定,蔡宏偉;高導(dǎo)電耐磨銅基復(fù)合材料的研究[J];機(jī)械工程材料;2003年11期
9 張紅霞,胡樹兵,涂江平;顆粒增強(qiáng)銅基復(fù)合材料的研究進(jìn)展[J];材料科學(xué)與工藝;2005年04期
10 羅賢;楊延清;王含英;劉玉成;原梅妮;陳彥;;銅基復(fù)合材料的研究現(xiàn)狀[J];材料導(dǎo)報;2006年08期
相關(guān)會議論文 前10條
1 宋影影;王文芳;吳玉程;;碳-銅基復(fù)合材料的制備和性能分析[A];2011年安徽省科協(xié)年會——機(jī)械工程分年會論文集[C];2011年
2 張吉明;謝明;楊有才;李季;陳永泰;崔浩;劉滿門;;Y_2O_3/La_2O_3/Al_2O_3/Cu新型銅基復(fù)合材料研究[A];有色金屬工業(yè)科學(xué)發(fā)展——中國有色金屬學(xué)會第八屆學(xué)術(shù)年會論文集[C];2010年
3 湛永鐘;張國定;S.Hiroshi;莊應(yīng)烘;周懷營;;界面優(yōu)化對銅基復(fù)合材料微觀結(jié)構(gòu)與性能的影響[A];第三屆廣西青年學(xué)術(shù)年會論文集(自然科學(xué)篇)[C];2004年
4 金永平;項春;崔梁萍;郭斌;;燒結(jié)工藝參數(shù)對石墨/銅基復(fù)合材料摩擦磨損行為的影響(英文)[A];真空技術(shù)與表面工程——第九屆真空冶金與表面工程學(xué)術(shù)會議論文集[C];2009年
5 楊浩;朱明明;李衛(wèi);;短碳纖維增強(qiáng)銅基復(fù)合材料的載流摩擦磨損研究[A];2013廣東材料發(fā)展論壇——戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展與新材料科技創(chuàng)新研討會論文摘要集[C];2013年
6 尹延國;焦明華;俞建衛(wèi);解挺;劉煜;馬少波;田明;;石墨表面金屬鍍層對銅基復(fù)合材料摩擦學(xué)性能的影響[A];第八屆全國摩擦學(xué)大會論文集[C];2007年
7 徐玉松;孫建科;;Al_2O_(3p)彌散強(qiáng)化銅基復(fù)合材料研究[A];2000年材料科學(xué)與工程新進(jìn)展(下)——2000年中國材料研討會論文集[C];2000年
8 李斌;劉貴民;杜建華;;碳納米管增強(qiáng)銅基復(fù)合材料的性能研究[A];第八屆全國表面工程學(xué)術(shù)會議暨第三屆青年表面工程學(xué)術(shù)論壇論文集(二)[C];2010年
9 秦永強(qiáng);吳玉程;洪雨;王巖;王德寶;王文芳;黃新民;;SiC顆粒增強(qiáng)銅合金的組織與性能研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第7分冊)[C];2010年
10 宋克興;國秀花;張永振;王旭;張彥敏;;表層Cr_2O_3彌散強(qiáng)化銅基復(fù)合材料電滑動摩擦磨損性能研究[A];2011年全國青年摩擦學(xué)與表面工程學(xué)術(shù)會議論文集[C];2011年
相關(guān)博士學(xué)位論文 前5條
1 王德寶;高性能耐磨銅基復(fù)合材料的制備與性能研究[D];合肥工業(yè)大學(xué);2008年
2 朱建華;復(fù)合電鑄制備顆粒增強(qiáng)銅基復(fù)合材料工藝及性能研究[D];上海交通大學(xué);2007年
3 冉旭;銅基減摩耐磨復(fù)合材料的制備與性能研究[D];吉林大學(xué);2005年
4 崔照雯;碳納米管、氧化鋁顆粒協(xié)同增強(qiáng)銅基復(fù)合材料及表面涂層[D];北京科技大學(xué);2015年
5 趙錚;顆粒增強(qiáng)銅基復(fù)合材料的爆炸壓實(shí)和數(shù)值模擬研究[D];大連理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 蔣婭琳;(TiB_2+α-Al_2O_3)顆粒增強(qiáng)銅基復(fù)合材料的原位反應(yīng)機(jī)理及摩擦磨損性能研究[D];南京理工大學(xué);2015年
2 李東;鈦酸鉛顆粒增強(qiáng)銅基復(fù)合材料的性能研究[D];哈爾濱工業(yè)大學(xué);2015年
3 史德璋;碳納米管銅基復(fù)合材料的制備及性能研究[D];青島科技大學(xué);2015年
4 莫飛;氧化鑭增強(qiáng)銅基復(fù)合材料的摩擦磨損性能研究[D];合肥工業(yè)大學(xué);2015年
5 靳宇;超順排碳納米管增強(qiáng)銅基復(fù)合材料的制備與組織性能分析[D];清華大學(xué);2015年
6 歐陽雯婧;表面改性碳纖維增強(qiáng)銅基復(fù)合材料的制備與表征[D];蘭州理工大學(xué);2016年
7 董抗;(Al-)Ti-C-Cu系原位反應(yīng)合成銅基復(fù)合材料的反應(yīng)機(jī)理及力學(xué)性能研究[D];南京理工大學(xué);2016年
8 李守委;銅基Ba_(1-x)Sr_xTiO_3復(fù)合材料的制備及組織性能研究[D];哈爾濱工業(yè)大學(xué);2015年
9 汪次榮;碳納米管增強(qiáng)銅基復(fù)合材料的制備及性能測試[D];湖南大學(xué);2015年
10 周加敏;納米顆粒增強(qiáng)銅基復(fù)合材料工藝及性能的研究[D];西南交通大學(xué);2017年
,本文編號:1835271
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/1835271.html