a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

CNTs-SiC_p雙納米相增強鋁基復(fù)合材料的制備及其協(xié)同強化機制

發(fā)布時間:2018-05-02 22:19

  本文選題:碳納米管(CNTs) + 納米碳化硅顆粒(SiC_p) ; 參考:《西安理工大學(xué)》2017年碩士論文


【摘要】:碳納米管(Carbon nanotubes,CNTs)增強鋁基復(fù)合材料(Aluminum matrix composites,AMCs)因集成鋁和CNTs各自的優(yōu)異性能而得到廣泛關(guān)注。然而CNTs分散困難以及CNTs/Al界面反應(yīng)控制問題是制約其發(fā)展的瓶頸。為解決以上問題,本文提出了低能濕法混合和CNTs-SiCp雙納米相增強AMCs的新研究思路。研究首先采用低速行星球磨(Planetary Ball Milling, PBM)制備了 CNTs/Al 及 CNTs-SiCp/Al 復(fù)合粉體,利用放電等離子燒結(jié)(Spark Plasma Sintering,SPS)技術(shù)對粉體進行固化,并經(jīng)熱擠壓(Hot Extrusion,HE)制備獲得CNTs和CNTs-SiCp增強AMCs。通過熱力學(xué)分析、微觀組織觀察、界面微觀結(jié)構(gòu)分析以及力學(xué)性能測試,闡明了燒結(jié)溫度、CNTs含量、SiC含量及雙納米增強相對AMCs組織及性能的影響規(guī)律。CNTs增強AMCs研究結(jié)果表明:630 ℃下燒結(jié)制備的AMCs經(jīng)擠壓后相對密度均超過99%,達到完全致密化;CNTs含量不超過0.5 vol.%時,其在鋁基體中呈現(xiàn)均勻單獨分散狀態(tài),實際增強效果與理論值相吻合;當(dāng)CNTs含量超過0.5 vol.%時,CNTs容易在局部發(fā)生聚集形成團簇,從而導(dǎo)致孔洞及微裂紋等缺陷,弱化CNTs的增強效果,最終降低AMCs的力學(xué)性能、延性和導(dǎo)電性;微觀組織觀察表明:CNTs能夠有效地細化Al基體晶粒,并且隨CNTs含量增加晶粒細化效果更為明顯;界面微觀結(jié)構(gòu)分析表明:當(dāng)燒結(jié)溫度升至630 ℃時,CNTs與Al之間發(fā)生界面反應(yīng)生成Al4C3,反應(yīng)從CNTs外壁開始,CNTs內(nèi)層仍然保持其原始管狀結(jié)構(gòu);力學(xué)性能測試結(jié)果表明:隨著燒結(jié)溫度的升高,AMCs的抗拉強度逐漸提高。通過對CNTs-Al體系的研究確定了合適的制備工藝,明確了在此制備條件下,CNTs含量高于0.5vol%時其容易發(fā)生團聚,從而導(dǎo)致AMCs力學(xué)性能和導(dǎo)熱導(dǎo)電性能下降,為CNTs-SiCp雙納米相增強AMCs的研究奠定了理論和實驗基礎(chǔ)。在對CNTs-Al體系研究的基礎(chǔ)上,本文提出引入納米SiCp作為第二增強相以促進CNTs強化效果的發(fā)揮。研究采用“超聲分散-PBM-SPS-HE”相結(jié)合的工藝制備了致密的CNTs-SiCp雙納米相增強AMCs。結(jié)果表明:SiCp的加入進一步促進了 CNTs的分散,改善了 CNTs與基體之間的潤濕性;SiC作為增強顆?梢砸种凭Я5拈L大并阻礙位錯的運動起到細晶強化和彌散強化的作用;分布于CNTs周圍的SiCp可以通過釘扎作用抑制或延緩CNTs的拔出和剝離,進一步提升CNTs的強化效果,協(xié)助CNTs發(fā)揮強化作用;當(dāng)兩種增強粒子相互協(xié)同作用時其增強效果明顯優(yōu)于單一增強相,且雙納米相更有效地細化了晶粒。0.5CNTs-0.5SiCp/Al復(fù)合材料的抗拉強度達到247 MPa,相比于純Al ( σ b =127 MPa)提升了 94%,而相比于 1.OCNTs/Al ( σ b=217 MPa)和 1.0SiCp/Al ( σ b=158 MPa)也分別有14%和56%的提升。通過界面分析,發(fā)現(xiàn)在CNTs與Al基體之間存在納米級反應(yīng)過渡層,顯著提高了界面結(jié)合強度,使載荷可以有效地從Al基體傳遞至增強體,從而顯著提升AMCs的強度。同時SiCp的存在也抑制了界面層的過度反應(yīng),使得AMCs強度提升的同時,能夠保持和純A1相近的延伸率(20%)和電導(dǎo)率(50%IACS)。CNTs-SiCp增強AMCs主要的強化機制包括載荷傳遞、細晶強化和彌散強化,其強化機制是CNTs和SiCp兩種納米增強相協(xié)同強化的結(jié)果。
[Abstract]:Carbon nanotube (Carbon nanotubes, CNTs) reinforced aluminum matrix composites (Aluminum matrix composites, AMCs) have been widely concerned for their excellent performance in the integration of aluminum and CNTs. However, the difficulty of CNTs dispersion and the control of CNTs/Al interface reaction are the bottlenecks that restrict its development. In order to solve the above problems, this paper proposes a low energy wet mixing and a mixture of low energy and moisture. The new research idea of CNTs-SiCp double nanometers enhanced AMCs was studied. Firstly, the composite powders of CNTs/Al and CNTs-SiCp/Al were prepared by low speed planetary ball milling (Planetary Ball Milling, PBM). The powder was cured by discharge plasma sintering (Spark Plasma Sintering, SPS). NTs-SiCp enhanced AMCs. through thermodynamic analysis, microstructure observation, interfacial microstructure analysis and mechanical properties testing, clarified the sintering temperature, CNTs content, SiC content and the influence of double nano on the relative AMCs microstructure and properties.CNTs enhanced AMCs research results showed that the relative density of AMCs prepared at 630 C was all after extrusion. More than 99%, achieve complete densification; when CNTs content is not more than 0.5 vol.%, it presents a uniform dispersion state in the aluminum matrix, and the actual enhancement effect is consistent with the theoretical value. When the content of CNTs exceeds 0.5 vol.%, CNTs is easily aggregated and formed in a local cluster, resulting in defects such as holes and micro cracks and weakens the enhancement effect of CNTs. The mechanical properties, ductility and conductivity of AMCs are reduced, and the microstructure observation shows that CNTs can effectively refine the grain of Al matrix, and the effect of grain refinement is more obvious with the increase of CNTs content. The interfacial microstructure analysis shows that when the sintering temperature rises to 630 C, the interfacial reaction between CNTs and Al generates Al4C3, and the reaction is opened from the outer wall of CNTs. In the beginning, the inner layer of CNTs still maintains its original tubular structure, and the results of mechanical properties test show that the tensile strength of AMCs increases with the increase of sintering temperature. The suitable preparation process is determined by the study of the CNTs-Al system. It is clear that when the content of CNTs is higher than 0.5vol%, it is easy to be reunion and thus leads to the AMCs force. The decline of the performance and the conductivity of thermal conductivity has laid a theoretical and experimental basis for the study of the CNTs-SiCp double nanomaterials enhanced AMCs. On the basis of the study of the CNTs-Al system, this paper introduces the introduction of nano SiCp as the second enhanced phase to promote the enhancement of the CNTs enhancement effect. The compact CNTs-SiCp double nanomaterials enhanced AMCs. results showed that the addition of SiCp further promoted the dispersion of CNTs and improved the wettability between the CNTs and the matrix, and SiC as an enhanced particle could inhibit the growth of grain and impede the motion of dislocation to enhance the crystallization and dispersion of the dislocation, and the SiCp around CNTs can pass through. The pinning effect inhibits or delays the exfoliation and stripping of CNTs, further improves the strengthening effect of CNTs and assists CNTs to exert its strengthening effect. When the two enhanced particles synergy with each other, the enhancement effect is obviously better than that of the single enhanced phase, and the double nanometers more effectively refine the tensile strength of the grain.0.5CNTs-0.5SiCp/Al composite to reach 247 MP. A, compared to pure Al (sigma B =127 MPa) increased by 94%, compared to 1.OCNTs/Al (sigma b=217 MPa) and 1.0SiCp/Al (sigma b=158 MPa) also 14% and 56%, respectively. Through the interface analysis, it was found that there was a nano reaction transition layer between the CNTs and the substrate, which significantly increased the interfacial bonding strength, so that the load could be effectively transmitted from the substrate. The strength of AMCs is greatly enhanced, and the presence of SiCp also inhibits the overreaction of the interface layer. While the strength of AMCs is enhanced, the main strengthening mechanisms of the extensibility (20%) and the conductivity (50%IACS).CNTs-SiCp enhanced AMCs, which are similar to pure A1, include load transfer, fine grain strengthening and dispersion strengthening, and its strengthening The mechanism is the result of the synergistic enhancement of two kinds of nano reinforcing phases of CNTs and SiCp.

【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33

【參考文獻】

相關(guān)期刊論文 前10條

1 Ziyang Xiu;Wenshu Yang;Ronghua Dong;Murid Hussain;Longtao Jiang;YongXing Liu;Gaohui Wu;;Microstructure and Mechanical Properties of 45 vol.%SiC_p/7075Al Composite[J];Journal of Materials Science & Technology;2015年09期

2 謝敬佩;王行;王愛琴;郝世明;劉舒;;真空熱壓SiC_p/2024Al復(fù)合材料力學(xué)性能與顯微結(jié)構(gòu)[J];材料熱處理學(xué)報;2015年01期

3 吳文杰;王愛琴;王榮旗;謝敬佩;;SiC顆粒增強Al-Si基復(fù)合材料的國內(nèi)研究進展[J];粉末冶金工業(yè);2014年06期

4 崔照雯;劉建金;王聰聰;梁棟;高鵬;賈成廠;;碳納米管和氧化鋁顆粒在銅基復(fù)合材料中的協(xié)同作用[J];粉末冶金技術(shù);2014年05期

5 Hansang Kwon;Marc Leparoux;Akira Kawasaki;;Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering[J];Journal of Materials Science & Technology;2014年08期

6 劉玫潭;凌嘉輝;劉家成;洪曉松;李國強;;SiC增強Al基復(fù)合材料的制備和性能[J];半導(dǎo)體光電;2014年03期

7 D.Wang;B.L.Xiao;Q.Z.Wang;Z.Y.Ma;;Evolution of the Microstructure and Strength in the Nugget Zone of Friction Stir Welded SiCp/Al-Cu-Mg Composite[J];Journal of Materials Science & Technology;2014年01期

8 湯金金;李才巨;朱心昆;;碳納米管增強鋁基復(fù)合材料的界面研究進展[J];材料導(dǎo)報;2012年11期

9 賀毅強;;顆粒增強金屬基復(fù)合材料的研究進展[J];熱加工工藝;2012年02期

10 李燦民;王文芳;吳玉程;;機械合金化制備銅碳合金增強銅-石墨復(fù)合材料[J];稀有金屬與硬質(zhì)合金;2011年04期

相關(guān)博士學(xué)位論文 前1條

1 楊旭東;均勻分散的碳納米管增強鋁基復(fù)合材料的制備與性能[D];天津大學(xué);2012年

,

本文編號:1835722

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/1835722.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fab6f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久97久久97精品免视看秋霞| 永久免费无码网站在线观看| 日韩人妻无码一区二区三区久久99| 国产无遮挡又黄又爽不要vip网站| 欧牲交a欧美牲交aⅴ| 亚洲成AV人最新无码| 丘北县| 黄色的视频| 与岳乱lun第18部| 三级黄色片免费看| 一级a爱在线观看| av福利网| 人人爱人人妻| 午夜精品久久久久久久99热蜜桃| 久久色av| 嫩草嫩草嫩草嫩草| 浴室人妻的情欲hd中字| 午夜久久精品| 亚洲成熟少妇毛耳耳| 四虎影院在线视频| 国产精品无套粉嫩白浆在线| 成人免费视屏| 国产大屁股喷水| 操人网| 狠狠干综合| 少妇av| 淮南市| 国产三级在线观看播放视频 | 欧美精品亚洲精品| 女同h| 欧美一级特黄片| 日韩美女一区二区三区| 日韩亚洲变态另类中文| 国模吧一区| 久久看视频| 网站正能量直接进入主页可以吗| 日韩无| 久久先锋男人av资源网站| 美女露出奶头扒开尿口| 亚洲欧美日韩中文字幕一区二区三区 | 黄片一区|