a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當前位置:主頁 > 科技論文 > 材料論文 >

二維材料層堆疊異質(zhì)結(jié)的第一性原理研究

發(fā)布時間:2018-05-03 12:01

  本文選題:第一性原理 + 異質(zhì)結(jié); 參考:《西安電子科技大學》2015年碩士論文


【摘要】:自從石墨烯出現(xiàn)以后證明二維材料可以在常溫下穩(wěn)定存在,二維材料的研究迅速擴展開來。隨著研究的不斷深入,人們發(fā)現(xiàn)堆疊兩種二維材料形成異質(zhì)結(jié)可以呈現(xiàn)出一些新穎的特性,而且由于二維材料層間是靠微弱的范德華力結(jié)合而成,不需要考慮如體材料異質(zhì)結(jié)一樣因為晶格不匹配造成的限制,這樣大大促進了二維材料異質(zhì)結(jié)的研究。本文借助模擬軟件Material Studio,對TMDs-MoS_2異質(zhì)結(jié)和Graphene-TMDs異質(zhì)結(jié)兩類異質(zhì)結(jié)進行模擬計算,研究其內(nèi)部結(jié)構(gòu)、能帶結(jié)構(gòu)、光學性質(zhì)等,所取得的研究成果如下:1.首先對WSe_2-MoS_2異質(zhì)結(jié)的超胞的晶格參數(shù)、能帶結(jié)構(gòu)、態(tài)密度、電子布局和差分電荷密度。能帶結(jié)構(gòu)和態(tài)密度的計算結(jié)果顯示,WSe_2-MoS_2異質(zhì)結(jié)具有直接帶隙能帶結(jié)構(gòu),禁帶寬度為0.441eV。其值均小于WSe_2和MoS_2的禁帶寬度,意味著若將該結(jié)構(gòu)用于太陽電池或光電探測器,可以增強相關(guān)器件對長波長光子的吸收與響應(yīng)。電子布局和差分電荷密度的計算結(jié)果表明,異質(zhì)結(jié)構(gòu)成后可使WSe_2分子層荷正電,MoS_2分子層荷負電,由此形成由WSe_2層指向MoS_2層的內(nèi)建電場,該內(nèi)建電場的形成有助于實現(xiàn)光生電子-空穴對的分離。計算結(jié)果分析說明WSe_2-MoS_2異質(zhì)結(jié)非常適合被用來制作需要對長波長光子吸收與響應(yīng)的太陽電池和光電探測器等光電子器件。2.分析了三種不同堆疊方式對WSe_2-MoS_2異質(zhì)結(jié)的影響。能帶結(jié)構(gòu)計算結(jié)果顯示,三種WSe_2-MoS_2異質(zhì)結(jié)都具有直接帶隙能帶結(jié)構(gòu),禁帶寬度分別為0.441eV、0.859eV、0.522eV。這就意味著通過不同方式的堆疊,可以用來調(diào)控該類異質(zhì)結(jié)合適的禁帶寬度,從而拓寬此類異質(zhì)結(jié)的應(yīng)用范圍。通過形成能的計算表明,三種結(jié)構(gòu)形成能都為負值,而且相差很小,說明三種結(jié)構(gòu)都容易形成,在分析實際實驗時,必須同時考慮三種結(jié)構(gòu)共同存在的情況。光學性質(zhì)的計算結(jié)果可知,由于禁帶寬度的差別結(jié)構(gòu)2的吸收系數(shù)、光電導(dǎo)在中長波范圍內(nèi)比結(jié)構(gòu)1和結(jié)構(gòu)3都要好;吸收邊普遍左移,這有利于異質(zhì)結(jié)對紅外波段的長波的吸收。對MoSe_2-MoS_2異質(zhì)結(jié)和WS_2-MoS_2異質(zhì)結(jié)的計算顯示,兩種異質(zhì)結(jié)都為直接帶隙,禁帶寬帶分別為0.780eV和1.389eV。吸收譜的比較發(fā)現(xiàn)MoSe_2-MoS_2異質(zhì)結(jié)在高頻范圍內(nèi)有著很強的吸收,可以應(yīng)用到對紫外、深紫外探測器的研究。3.最后,我們對Graphene-TMDs異質(zhì)結(jié)進行計算研究,發(fā)現(xiàn)graphene-MoS_2異質(zhì)結(jié)按照第二種方式堆疊能打開石墨烯能隙,兩種結(jié)構(gòu)主要差別在于S原子對石墨烯層中C原子雜化的程度的情況不同。形成能的計算顯示兩種結(jié)構(gòu)都較容易形成。Graphene-WS_2異質(zhì)結(jié)的兩種方式使得石墨烯有著17meV和49meV帶隙的打開,這就意味著可以通過利用石墨烯與WS_2的堆疊來控制石墨烯的能帶,從而有利于石墨烯的開關(guān)器件中的應(yīng)用。Graphene-WSe_2異質(zhì)結(jié)的兩種堆疊方式都為零帶隙,并沒有使得石墨烯能隙的打開。造成這種差別的原因在于導(dǎo)帶低和價帶頂Mo原子和W原子貢獻相同,主要差別來自S原子和Se原子的不同貢獻。光學性質(zhì)研究發(fā)現(xiàn),此類異質(zhì)結(jié)拓寬了單一材料對光的吸收頻譜,而且發(fā)現(xiàn)Graphene-MoS_2異質(zhì)結(jié)與另兩種異質(zhì)結(jié)對高頻高能光子的吸收范圍有所不同。這樣通過利用這些特性使得此類異質(zhì)結(jié)更加有利于應(yīng)用到光電子領(lǐng)域。
[Abstract]:Since the appearance of graphene has proved that the two-dimensional material can be stable at normal temperature, the study of two-dimensional materials has expanded rapidly. With the development of the research, it is found that stacking of two kinds of two-dimensional materials can present some novel properties, and the two dimension material is combined with weak van Edward force. It does not need to consider the restriction caused by the lattice mismatch, such as the bulk material heterojunction, which greatly promotes the study of the two-dimensional heterojunction. In this paper, the simulation software Material Studio is used to simulate two types of heterojunction, TMDs-MoS_2 heterojunction and Graphene-TMDs heterojunction, to study the internal structure, band structure and optics. The results obtained are as follows: 1. first, the lattice parameters of the supercell of the WSe_2-MoS_2 heterojunction, the band structure, the state density, the electron distribution and the differential charge density. The results of the band structure and the density of states show that the WSe_2-MoS_2 heterojunction has a direct band gap structure and the band gap of 0.441eV. is less than WSe_2 and Mo. The band gap of S_2 means that if the structure is used in solar cells or photodetectors, the absorption and response of the related devices to Nagawa Nagahikaruko can be enhanced. The results of the electronic layout and differential charge density show that the WSe_2 molecular layer can be charged positively and the MoS_2 molecular layer is charged, thus forming the WSe_2 layer to Mo. The internal electric field of the S_2 layer, the formation of the built electric field helps to realize the separation of the photoelectron hole pair. The calculation results show that the WSe_2-MoS_2 heterojunction is very suitable for making.2. analysis of three different stacking modes for the photoelectron devices, such as the solar cells and photodetectors, which need to absorb and respond to the WSe_2-. The effect of MoS_2 heterostructure. The results of band structure calculation show that the three WSe_2-MoS_2 heterostructures have direct band gap band structure, and the band gap is 0.441eV, 0.859eV, 0.522eV., which means that the different ways of stacking can be used to regulate the appropriate band gap of this kind of heterojunction, thus widening the application model of such heterojunction. The calculation of the formation energy shows that the formation energy of the three structures is negative, and the difference is very small, indicating that the three structures are easy to form. In the analysis of the actual experiment, the common existence of the three structures must be considered simultaneously. The long wave range is better than the structure 1 and the structure 3; the absorption edge is generally left shift, which is beneficial to the absorption of the long wave in the infrared band of the heterojunction. For the MoSe_2-MoS_2 heterojunction and the WS_2-MoS_2 heterojunction, the two heterostructures are all direct bandgap, and the band gap is compared to the 0.780eV and 1.389eV. absorption spectra, respectively. The junction has very strong absorption in the high frequency range, and can be applied to the study of UV, deep ultraviolet detector.3.. We have calculated the Graphene-TMDs heterojunction. It is found that the graphene-MoS_2 heterojunction can open the energy gap of the graphene by stacking in second ways. The main difference of the two structure is that the S atom has the C atom in the graphene layer. The formation energy is different. The calculation of the formation energy shows that the two structures are easier to form two ways of.Graphene-WS_2 heterojunction, which makes the 17meV and 49meV band gap open, which means that the energy band of graphene can be controlled by using the stacking of graphene and WS_2, thus it is beneficial to the switching devices of graphene. The two stacking methods used in the.Graphene-WSe_2 heterojunction are zero band gaps, and the energy gap is not opened. The reason for this difference is that the lead band is low and the valence band top Mo and W atoms contribute the same, the main difference is from the different contributions of the S atom and the Se atom. The absorption spectrum of light by a single material and the difference between the absorption range of the Graphene-MoS_2 heterojunction and the other two heterostructures for high frequency and high energy photons are found. By using these properties, this kind of heterojunction will be more beneficial to the application of the photoelectron field.

【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB30

【參考文獻】

相關(guān)期刊論文 前3條

1 Xin Tong;Eric Ashalley;Feng Lin;Handong Li;Zhiming M.Wang;;Advances in MoS_2-Based Field Effect Transistors(FETs)[J];Nano-Micro Letters;2015年03期

2 黃桂榮;陳建;;石墨烯的合成與應(yīng)用[J];炭素技術(shù);2009年01期

3 曹鈺華;崔樹茂;劉軻;楊志懋;;單原子層二維碳片的獨特性質(zhì)與應(yīng)用前景展望[J];材料導(dǎo)報;2008年01期

,

本文編號:1838407

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/1838407.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4ac7c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
免费在线视频你懂的| 熟妇人妻中文字幕| 亚洲精品TV久久久久久久久久| 老司机av| 中文字幕欧美人妻精品一区| 久久久久久97| 亚洲乱亚洲乱妇无码| 四虎www永久在线精品| 国产毛片毛片| 一个人看的www高清免费视频| 伊在人亚洲香蕉精品区| 少妇熟女av| 日本乱熟人妻中文字幕乱码| 国产在视频线精品视频 | 国产精品成人一区二区三区| AV狠狠色丁香婷婷综合久久 | xxxx内射中国老妇| 又大又粗征服女省委书记| 色噜噜一区二区三区| 狂野欧美| 国产成人综合五月天久久| 欧美色欧美亚洲另类二区| 久久亚洲精品日韩高清| 国产ww久久久久久久久久| 亚洲精品国产AV天美传媒| 最近日本字幕mv免费观看在线| 欧美性猛交富婆| 久久久久久精品综合色8888| 丰满少妇人妻无码专区| 四虎成人精品在永久免费| aⅴ免费视频在线观看| 少妇又色又紧又黄又刺激免费| 内谢少妇XXXXX8老少交| 日韩精品无码免费专区网站| 吉首市| 麻豆91精品91久久久| 久久老熟女一区二区三区福利| 国产精品乱码一区二区三| 日韩色综合| 超薄丝袜连裤袜一二三区| 公粗一晚六次挺进我密道视频|