碳納米管/環(huán)氧樹脂復(fù)合材料高低溫彈性模量的分子模擬與實(shí)驗(yàn)研究
本文選題:碳納米管 + 環(huán)氧樹脂; 參考:《北京化工大學(xué)》2016年碩士論文
【摘要】:航空航天用碳纖維/樹脂基復(fù)合材料,由于其應(yīng)用環(huán)境的溫度變化范圍大,所以在工程應(yīng)用中必須掌握樹脂基體在不同溫度條件下力學(xué)性能的變化趨勢(shì)以及與微觀交聯(lián)結(jié)構(gòu)的聯(lián)系。研究表明,纖維增強(qiáng)體與樹脂基體之間存在一個(gè)模量過渡區(qū)域,當(dāng)纖維的種類和體積分?jǐn)?shù)一定時(shí),提高基體的模量,可以有效地減小復(fù)合材料界面處的剪切應(yīng)力集中系數(shù),從而能夠提高復(fù)合材料的層剪、彎曲等性能。碳納米管(CNTs)因其出色的力學(xué)性能,被用于提高樹脂基體高低溫環(huán)境下的彈性模量,探究這一提高作用的微觀機(jī)理是指導(dǎo)設(shè)計(jì)優(yōu)異力學(xué)性能環(huán)氧樹脂基復(fù)合材料的關(guān)鍵。針對(duì)上述問題,本文采用計(jì)算機(jī)分子模擬和實(shí)驗(yàn)相結(jié)合的方法分析了不同交聯(lián)結(jié)構(gòu)的環(huán)氧樹脂基體的彈性模量隨溫度的變化,以及碳納米管對(duì)環(huán)氧樹脂高低溫彈性模量的影響,并用模擬軟件從微觀角度對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了解釋,建立起微觀結(jié)構(gòu)與宏觀彈性模量的聯(lián)系,為設(shè)計(jì)高性能環(huán)氧樹脂基體復(fù)合材料提供理論基礎(chǔ)。具體工作如下:通過模擬軟件構(gòu)建了DDM/E51和DDS/E51不同交聯(lián)結(jié)構(gòu)的樹脂基體模型,通過分子動(dòng)力學(xué)模擬與實(shí)驗(yàn)相結(jié)合的方法研究了各樹脂體系的玻璃化轉(zhuǎn)變溫度(Tg)和從低溫環(huán)境到Tg范圍內(nèi)的一系列溫度點(diǎn)的彈性模量。發(fā)現(xiàn)樹脂基體的彈性模量隨著溫度升高而減小,模擬值與實(shí)驗(yàn)值結(jié)果較為一致。這主要是由于隨著溫度的升高,樹脂基體的內(nèi)聚能密度和鏈段堆砌密度不斷減小,而鏈段運(yùn)動(dòng)能力和自由體積分?jǐn)?shù)不斷變大等微觀因素導(dǎo)致的。構(gòu)建SWCNTs/DDM/E51和SWCNTs/DDS/E51單壁碳納米管改性的環(huán)氧樹脂交聯(lián)結(jié)構(gòu)模型,模擬和實(shí)驗(yàn)的結(jié)果均發(fā)現(xiàn)單壁碳納米管提高了樹脂基體的Tg和每個(gè)溫度點(diǎn)的彈性模量,并降低了體積熱膨脹系數(shù)。主要是因?yàn)閱伪谔脊茉鰪?qiáng)了基體的剛性,限制了分子鏈段的運(yùn)動(dòng)能力,減小了自由體積分?jǐn)?shù),提高了基體的內(nèi)聚能密度和鏈段堆砌密度。單壁碳管對(duì)鏈段堆砌密度的提高效果在各溫度點(diǎn)基本一致;對(duì)自由體積分?jǐn)?shù)和鏈斷運(yùn)動(dòng)能力的減小效果在低溫環(huán)境下可忽略,但在室溫以上非常明顯,從而提高了樹脂基體的耐高溫性能。
[Abstract]:Carbon fiber / resin matrix composites for aerospace applications have a large range of temperature variations in its application environment, so it is necessary to master the change trend of the mechanical properties of the resin matrix under different temperature conditions and the connection with the microscopic cross-linking structure in the engineering application. When the type and volume fraction of the fiber are fixed, the modulus of the matrix can be improved, and the shear stress concentration coefficient at the interface of the composite can be reduced effectively, thus the laminar shear and bending properties of the composite can be improved. Because of its excellent mechanical properties, carbon nanotube (CNTs) is used to improve the projectile under the high and low temperature environment of the resin matrix. The key to the design of epoxy resin matrix composites with excellent mechanical properties is the micromoduli, which is the key to the design of the enhanced mechanical properties of epoxy resin matrix composites. The influence of the elastic modulus of epoxy resin at high and low temperature was explained, and the experimental results were explained from the micro angle with the simulation software. The relationship between the microstructure and the macro modulus of elasticity was established. It provided a theoretical basis for the design of high performance epoxy resin matrix composites. The specific work is as follows: the DDM/E51 and DDS/E51 are constructed by the simulation software. The elastic modulus of the glass transition temperature (Tg) and a series of temperature points from the low temperature environment to the Tg range are studied by the method of molecular dynamics simulation and experiment. It is found that the elastic modulus of the resin matrix decreases with the increase of temperature, and the simulation value and the experimental value are the same. The results are the same. This is mainly due to the increase of temperature, the decreasing of the density of the polymer matrix and the density of the chain section, the movement capacity of the chain segments and the increasing free volume fraction. The structure of the epoxy resin crosslinked structure model of the modified SWCNTs/DDM/E51 and SWCNTs/DDS/E51 single wall carbon nanotubes is modeled. It is found that the single wall carbon nanotube improves the Tg of the resin matrix and the modulus of the elastic modulus at each temperature point, and reduces the volume thermal expansion coefficient, mainly because the single wall carbon tube strengthens the rigidity of the matrix, restricts the movement ability of the molecular chain, reduces the free volume fraction, and improves the cohesive energy density and chain of the matrix. The increase of the density of the single wall carbon tube is basically the same at the temperature points, and the reduction effect on the free volume fraction and the chain breaking ability can be ignored in the low temperature environment, but it is very obvious at the room temperature, thus improving the high temperature resistance of the resin matrix.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TQ323.5;TB332
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何自強(qiáng);張惠玲;;環(huán)氧樹脂/對(duì)甲基苯基雙胍固化反應(yīng)動(dòng)力學(xué)研究[J];玻璃鋼/復(fù)合材料;2015年12期
2 鄭國(guó)棟;張清杰;鄧火英;蔣文革;楊小平;隋剛;;不同官能化碳納米管對(duì)MWCNTs-碳纖維/環(huán)氧樹脂復(fù)合材料力學(xué)性能的影響[J];復(fù)合材料學(xué)報(bào);2015年03期
3 汪準(zhǔn);鄧京蘭;王繼輝;祖磊;謝麗婷;穆建橋;;纖維纏繞復(fù)合材料石油套管結(jié)構(gòu)設(shè)計(jì)與優(yōu)化[J];玻璃鋼/復(fù)合材料;2015年05期
4 沈小軍;孟令軒;付紹云;;石墨烯-多壁碳納米管協(xié)同增強(qiáng)環(huán)氧樹脂復(fù)合材料的低溫力學(xué)性能[J];復(fù)合材料學(xué)報(bào);2015年01期
5 王志鵬;謝眾;李龍;李瑞;魏浩;劉連河;;不同固化劑對(duì)環(huán)氧樹脂的性能影響[J];全面腐蝕控制;2013年12期
6 許丹;隋剛;楊青;張清杰;曾娟娟;楊小平;;石墨烯微片表面接枝PMMA及其環(huán)氧樹脂復(fù)合材料性能[J];復(fù)合材料學(xué)報(bào);2014年02期
7 牟書香;賈智源;;碳纖維增強(qiáng)環(huán)氧樹脂復(fù)合材料的液體成型及其性能研究[J];玻璃鋼/復(fù)合材料;2013年Z2期
8 賈智源;宋秋香;王海珍;陳淳;薛忠民;;碳纖維真空灌注成型用環(huán)氧樹脂的流變特性分析[J];玻璃鋼/復(fù)合材料;2013年Z2期
9 汪澎;隋剛;楊小平;;環(huán)氧樹脂與胺類固化劑當(dāng)量比對(duì)固化物性能的影響[J];玻璃鋼/復(fù)合材料;2013年02期
10 赫玉欣;張麗;朱伸兵;姚大虎;張志強(qiáng);張玉清;;碳納米管的表面改性對(duì)環(huán)氧樹脂低溫(77K)沖擊性能及熱膨脹系數(shù)的影響[J];復(fù)合材料學(xué)報(bào);2012年04期
,本文編號(hào):2051450
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2051450.html