論寬帶隙半導(dǎo)體材料的發(fā)展
發(fā)布時(shí)間:2014-07-30 09:21
寬帶隙半導(dǎo)體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國(guó)防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測(cè)器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W。在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67 GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問(wèn)世,發(fā)展很快。此外,256×256 GaN基紫外光電焦平面陣列探測(cè)器也已研制成功。
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國(guó)3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的高潮。經(jīng)過(guò)多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過(guò)1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問(wèn)題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問(wèn)題。
寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對(duì)稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),筆耕文化推薦期刊,SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問(wèn)題。這個(gè)問(wèn)題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。
目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問(wèn)題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長(zhǎng)與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問(wèn)題,國(guó)內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。
一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料
基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫(kù)侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過(guò)能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進(jìn)展,1994年日本NTT就研制成功溝道長(zhǎng)度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國(guó)又報(bào)道了可在室溫工作的單電子開關(guān)器件,1998年Yauo等人采用0.25微米工藝技術(shù)實(shí)現(xiàn)了128Mb的單電子存貯器原型樣機(jī)的制造,這是在單電子器件在高密度存貯電路的應(yīng)用方面邁出的關(guān)鍵一步。目前,基于量子點(diǎn)的自適應(yīng)網(wǎng)絡(luò)計(jì)算機(jī),單光子源和應(yīng)用于量子計(jì)算的量子比特的構(gòu)建等方面的研究也正在進(jìn)行中。
與半導(dǎo)體超晶格和量子點(diǎn)結(jié)構(gòu)的生長(zhǎng)制備相比,高度有序的半導(dǎo)體量子線的制備技術(shù)難度較大。中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組,在繼利用MBE技術(shù)和SK生長(zhǎng)模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結(jié)構(gòu)的基礎(chǔ)上,對(duì)InAs/InAlAs量子線超晶格的空間自對(duì)準(zhǔn)(垂直或斜對(duì)準(zhǔn))的物理起因和生長(zhǎng)控制進(jìn)行了研究,取得了較大進(jìn)展。
王中林教授領(lǐng)導(dǎo)的喬治亞理工大學(xué)的材料科學(xué)與工程系和化學(xué)與生物化學(xué)系的研究小組,基于無(wú)催化劑、控制生長(zhǎng)條件的氧化物粉末的熱蒸發(fā)技術(shù),成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導(dǎo)體氧化物納米帶,它們與具有圓柱對(duì)稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結(jié)構(gòu)均勻和單晶體,幾乎無(wú)缺陷和位錯(cuò);納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長(zhǎng)度可達(dá)數(shù)毫米。這種半導(dǎo)體氧化物納米帶是一個(gè)理想的材料體系,可以用來(lái)研究載流子維度受限的輸運(yùn)現(xiàn)象和基于它的功能器件制造。香港城市大學(xué)李述湯教授和瑞典隆德大學(xué)固體物理系納米中心的Lars Samuelson教授領(lǐng)導(dǎo)的小組,分別在SiO2/Si和InAs/InP半導(dǎo)體量子線超晶格結(jié)構(gòu)的生長(zhǎng)制各方面也取得了重要進(jìn)展。
低維半導(dǎo)體結(jié)構(gòu)制備的方法很多,主要有:微結(jié)構(gòu)材料生長(zhǎng)和精細(xì)加工工藝相結(jié)合的方法,應(yīng)變自組裝量子線、量子點(diǎn)材料生長(zhǎng)技術(shù),圖形化襯底和不同取向晶面選擇生長(zhǎng)技術(shù),單原子操縱和加工技術(shù),納米結(jié)構(gòu)的輻照制備技術(shù),及其在沸石的籠子中、納米碳管和溶液中等通過(guò)物理或化學(xué)方法制備量子點(diǎn)和量子線的技術(shù)等。目前發(fā)展的主要趨勢(shì)是尋找原子級(jí)無(wú)損傷加工方法和納米結(jié)構(gòu)的應(yīng)變自組裝可控生長(zhǎng)技術(shù),以求獲得大小、形狀均勻、密度可控的無(wú)缺陷納米結(jié)構(gòu)。
本文編號(hào):6430
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國(guó)3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的高潮。經(jīng)過(guò)多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過(guò)1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問(wèn)題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問(wèn)題。
寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對(duì)稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),筆耕文化推薦期刊,SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問(wèn)題。這個(gè)問(wèn)題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。
目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問(wèn)題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長(zhǎng)與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問(wèn)題,國(guó)內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。
一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料
基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫(kù)侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過(guò)能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進(jìn)展,1994年日本NTT就研制成功溝道長(zhǎng)度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國(guó)又報(bào)道了可在室溫工作的單電子開關(guān)器件,1998年Yauo等人采用0.25微米工藝技術(shù)實(shí)現(xiàn)了128Mb的單電子存貯器原型樣機(jī)的制造,這是在單電子器件在高密度存貯電路的應(yīng)用方面邁出的關(guān)鍵一步。目前,基于量子點(diǎn)的自適應(yīng)網(wǎng)絡(luò)計(jì)算機(jī),單光子源和應(yīng)用于量子計(jì)算的量子比特的構(gòu)建等方面的研究也正在進(jìn)行中。
與半導(dǎo)體超晶格和量子點(diǎn)結(jié)構(gòu)的生長(zhǎng)制備相比,高度有序的半導(dǎo)體量子線的制備技術(shù)難度較大。中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組,在繼利用MBE技術(shù)和SK生長(zhǎng)模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結(jié)構(gòu)的基礎(chǔ)上,對(duì)InAs/InAlAs量子線超晶格的空間自對(duì)準(zhǔn)(垂直或斜對(duì)準(zhǔn))的物理起因和生長(zhǎng)控制進(jìn)行了研究,取得了較大進(jìn)展。
王中林教授領(lǐng)導(dǎo)的喬治亞理工大學(xué)的材料科學(xué)與工程系和化學(xué)與生物化學(xué)系的研究小組,基于無(wú)催化劑、控制生長(zhǎng)條件的氧化物粉末的熱蒸發(fā)技術(shù),成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導(dǎo)體氧化物納米帶,它們與具有圓柱對(duì)稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結(jié)構(gòu)均勻和單晶體,幾乎無(wú)缺陷和位錯(cuò);納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長(zhǎng)度可達(dá)數(shù)毫米。這種半導(dǎo)體氧化物納米帶是一個(gè)理想的材料體系,可以用來(lái)研究載流子維度受限的輸運(yùn)現(xiàn)象和基于它的功能器件制造。香港城市大學(xué)李述湯教授和瑞典隆德大學(xué)固體物理系納米中心的Lars Samuelson教授領(lǐng)導(dǎo)的小組,分別在SiO2/Si和InAs/InP半導(dǎo)體量子線超晶格結(jié)構(gòu)的生長(zhǎng)制各方面也取得了重要進(jìn)展。
低維半導(dǎo)體結(jié)構(gòu)制備的方法很多,主要有:微結(jié)構(gòu)材料生長(zhǎng)和精細(xì)加工工藝相結(jié)合的方法,應(yīng)變自組裝量子線、量子點(diǎn)材料生長(zhǎng)技術(shù),圖形化襯底和不同取向晶面選擇生長(zhǎng)技術(shù),單原子操縱和加工技術(shù),納米結(jié)構(gòu)的輻照制備技術(shù),及其在沸石的籠子中、納米碳管和溶液中等通過(guò)物理或化學(xué)方法制備量子點(diǎn)和量子線的技術(shù)等。目前發(fā)展的主要趨勢(shì)是尋找原子級(jí)無(wú)損傷加工方法和納米結(jié)構(gòu)的應(yīng)變自組裝可控生長(zhǎng)技術(shù),以求獲得大小、形狀均勻、密度可控的無(wú)缺陷納米結(jié)構(gòu)。
本文編號(hào):6430
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/6430.html
最近更新
教材專著