a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

界面修飾層對(duì)有機(jī)太陽能電池的性能影響研究

發(fā)布時(shí)間:2018-09-12 06:19
【摘要】:有機(jī)太陽能電池具有制備工藝簡(jiǎn)單、可以制備于柔性基板上、便攜性高、制備成本低廉、可以大面積成膜等優(yōu)勢(shì),在環(huán)境問題日益嚴(yán)重的今天受到了越來越多的關(guān)注,并且在近二十年來獲得了迅猛地發(fā)展。但是目前仍因能量轉(zhuǎn)換效率低下、壽命較低、物理機(jī)理不明確等問題無法投入商業(yè)化應(yīng)用。而界面修飾層是影響有機(jī)太陽能電池能量轉(zhuǎn)換效率、壽命及器件穩(wěn)定性的重要因素,本論文以提高器件的能量轉(zhuǎn)換效率為主要目的,從器件結(jié)構(gòu)設(shè)計(jì)、界面修飾層優(yōu)化方面入手,系統(tǒng)地研究了界面修飾層對(duì)器件轉(zhuǎn)換效率的影響。本論文可分為以下四個(gè)方面的主要研究?jī)?nèi)容:(1)研究了Mg:Ca:Al合金陰極小分子有機(jī)太陽能電池,通過改變合金陰極中金屬M(fèi)g的摻雜比例對(duì)器件性能進(jìn)行優(yōu)化,再對(duì)優(yōu)化過合金陰極的器件改變陰極緩沖層BPhen的厚度,研究BPhen作為陰極緩沖層對(duì)器件性能的影響,發(fā)現(xiàn)BPhen的引入在活性層與金屬陰極之間形成了良好的接觸,有效提高了電子的傳輸效率以及陰極對(duì)其收集效率,同時(shí)降低了光生激子的猝滅,有效提高了器件的能量轉(zhuǎn)換效率,當(dāng)BPhen薄膜厚度為10 nm時(shí),器件獲得最大能量轉(zhuǎn)換效率0.96%,比未添加陰極緩沖層的器件提高了88.24%,此時(shí)器件的開路電壓為0.34 V,短路電流為6.90 mA·cm-2,填充因子為0.41。(2)研究了CuPc:C60及NPB:C60結(jié)構(gòu)體異質(zhì)結(jié)有機(jī)太陽能電池,與同結(jié)構(gòu)平面異質(zhì)結(jié)器件進(jìn)行了對(duì)比,實(shí)驗(yàn)結(jié)果表明體異質(zhì)結(jié)器件的性能較平面異質(zhì)結(jié)器件有較大幅度提高,通過改變CuPc及NPB的摻雜比例對(duì)器件結(jié)構(gòu)進(jìn)行了優(yōu)化,并研究BPhen作為陰極緩沖層對(duì)器件性能的影響。研究表明BPhen作為陰極緩沖層起到了阻擋激子的作用,降低了光生載流子猝滅的幾率,有效地提高了器件性能。其中,對(duì)于CuPc/CuPc:C60/C60結(jié)構(gòu)的體異質(zhì)結(jié)器件,引入陰極緩沖層BPhen后器件的能量轉(zhuǎn)換效率由0.28%提高到了0.63%;對(duì)于CuPc/NPB:C60/C60結(jié)構(gòu)的器件,能量轉(zhuǎn)換效率由0.24%提高到了0.40%。(3)研究了引入陰極緩沖層Alq3的有機(jī)太陽能電池。通過實(shí)驗(yàn)驗(yàn)證了Alq3具有很好的電子傳輸能力,并且因?yàn)槠渥鳛殛帢O緩沖層的引入使活性層與金屬陰極間形成了良好的接觸,提高了電子載流子的傳輸效率,增加了器件的能量轉(zhuǎn)換效率。實(shí)驗(yàn)結(jié)果顯示,在Alq3薄膜厚度為3 nm時(shí),器件的能量轉(zhuǎn)換效率達(dá)到0.48%,相比于沒有陰極緩沖層的同結(jié)構(gòu)器件,引入了Alq3后器件的能量轉(zhuǎn)換效率提高了71.4%,該器件的開路電壓為0.25 V,短路電流為4.03 mA·cm-2,填充因子為0.47。(4)研究了NPB、MoO3及V2O5作為陽極緩沖層的ITO/Cu Pc/CuPc:C60/C60/BPhen/Al結(jié)構(gòu)的小分子有機(jī)太陽能電池。實(shí)驗(yàn)結(jié)果表明,NPB及MoO3的引入非但沒有提高器件性能反而影響了器件的能量轉(zhuǎn)換效率。而V2O5作為陽極緩沖層時(shí),由于經(jīng)過V2O5修飾后降低了ITO表面粗糙度,有利于其與活性層之間形成良好的歐姆接觸,從而提高了器件的開路電壓。同時(shí),V2O5作為陽極緩沖層有效地抑制了漏電流,降低了載流子的復(fù)合概率,從而提高了器件的短路電流。實(shí)驗(yàn)結(jié)果顯示,當(dāng)V2O5薄膜厚度為5 nm時(shí),器件獲得最大能量轉(zhuǎn)換效率0.79%,比為添加陽極緩沖層的同結(jié)構(gòu)器件提高了25.4%。
[Abstract]:Organic solar cells have many advantages, such as simple preparation process, high portability, low cost, and large-area film-forming. They have attracted more and more attention in the environment today, and have been developed rapidly in the last two decades. However, they are still inefficient in energy conversion. The interface modification layer is an important factor affecting the energy conversion efficiency, lifetime and device stability of organic solar cells. The main purpose of this paper is to improve the energy conversion efficiency of devices. The effects of interfacial modification layers on the conversion efficiency of the devices are studied systematically in this paper. The main research contents can be divided into the following four aspects: (1) Small molecule organic solar cells with Mg:Ca:Al alloy cathode are studied. The device performance is optimized by changing the doping ratio of Mg in the alloy cathode, and the device with optimized superalloy cathode is modified. The influence of BPhen as cathode buffer layer on device performance was studied. It was found that the introduction of BPhen formed a good contact between the active layer and the metal cathode, which effectively improved the transmission efficiency of electrons and the cathode collection efficiency. At the same time, the quenching of photoexcitons was reduced and the energy of the device was improved. When the thickness of BPhen film is 10 nm, the maximum energy conversion efficiency of the device is 0.96%, which is 88.24% higher than that of the device without cathode buffer layer. At this time, the open circuit voltage is 0.34 V, the short circuit current is 6.90 mA. cm-2, and the filling factor is 0.41. (2) The CuPc: C60 and NPB: C60 heterojunction organic solar cells are studied. The experimental results show that the performance of bulk heterojunction device is much better than that of planar heterojunction device. The structure of the device is optimized by changing the doping ratio of CuPc and NPB. The effect of BPhen as cathode buffer layer on the performance of the device is studied. Buffer layer acts as a barrier to excitons, reduces the probability of photogenerated carrier quenching and effectively improves the device performance. For bulk heterojunction devices with CuPc/CuPc:C60/C60 structure, the energy conversion efficiency is increased from 0.28% to 0.63% by introducing cathode buffer layer BPhen; for CuPc/NPB:C60/C60 structure, the energy conversion efficiency is increased from 0.28% to 0.63%. (3) Organic solar cells with cathode buffer layer Alq3 were studied. The experimental results show that Alq3 has good electron transfer ability, and because of its introduction as cathode buffer layer, the active layer contacts with metal cathode, and the electron carrier transfer efficiency is improved. The experimental results show that when the thickness of Alq3 film is 3 nm, the energy conversion efficiency of the device is 0.48%. Compared with the same structure device without cathode buffer layer, the energy conversion efficiency of the device is improved by 71.4%. The open-circuit voltage of the device is 0.25 V, the short-circuit current is 4.03 mA cm-2 and the filling current is 4.03 mA cm-2. Factor 0.47. (4) A small molecular organic solar cell with ITO/Cu Pc/CuPc:C60/C60/BPhen/Al structure with NPB, MoO_3 and V2O5 as anode buffer layers was studied. The experimental results show that the introduction of NPB and MoO_3 not only improves the performance of the device, but also affects the energy conversion efficiency of the device. The surface roughness of ITO decreases, which is beneficial to the formation of good ohmic contact between ITO and active layer, thus increasing the open-circuit voltage of the device. At the same time, as an anode buffer layer, V2O5 effectively suppresses the leakage current, reduces the probability of carrier recombination, and thus improves the short-circuit current of the device. At 5 nm, the maximum energy conversion efficiency of the device is 0.79%, which is 25.4% higher than that of the same structure device with anode buffer layer.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM914.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張利忠;吳明曉;田金鵬;謝偉廣;麥文杰;劉彭義;;雙陰極修飾層改善Rubrene/C_(70)有機(jī)太陽能電池的性能[J];光電子·激光;2016年10期

2 趙煥斌;孫欽軍;周淼;高利巖;郝玉英;史方;;復(fù)合陰極緩沖層Alq_3∶CsF對(duì)CuPc/C_(60)電池性能的影響[J];光譜學(xué)與光譜分析;2016年02期

3 白昱;郭曉陽;劉星元;;利用蛾眼結(jié)構(gòu)提高有機(jī)太陽能電池光吸收效率的理論研究[J];發(fā)光學(xué)報(bào);2015年05期

4 李衛(wèi)民;郭金川;周彬;;溶劑揮發(fā)時(shí)間對(duì)體異質(zhì)結(jié)有機(jī)太陽能電池復(fù)合特性的影響[J];發(fā)光學(xué)報(bào);2015年04期

5 蘇斌;郝夢(mèng);王龍;車廣波;杜文強(qiáng);劉書宇;王博;;基于MoO_3和Re-Bphen修飾有機(jī)太陽能電池性能的研究[J];光電子·激光;2015年04期

6 陳云龍;鄭加金;蔣宇宏;;鍍膜法改善有機(jī)薄膜太陽能電池光學(xué)性能[J];發(fā)光學(xué)報(bào);2014年06期

7 朱鍵卓;杜會(huì)靜;蘇子生;朱世敏;徐天賦;;載流子遷移率對(duì)有機(jī)太陽能電池性能影響的模擬研究[J];發(fā)光學(xué)報(bào);2013年04期

8 王鵬;郭閏達(dá);陳宇;岳守振;趙毅;劉式墉;;梯度摻雜體異質(zhì)結(jié)對(duì)有機(jī)太陽能電池光電轉(zhuǎn)換效率的影響[J];物理學(xué)報(bào);2013年08期

9 黃秋炎;鐘建;劉峰;高卓;于軍勝;蔣亞東;;Bphen作為緩沖層對(duì)有機(jī)太陽能電池的光電性能影響[J];光電子技術(shù);2010年04期

10 鐘建;劉峰;高卓;黃秋炎;于軍勝;蔣亞東;;Alq_3作為激子阻擋層對(duì)有機(jī)太陽能電池的影響[J];光電子技術(shù);2010年04期

相關(guān)碩士學(xué)位論文 前1條

1 孫秀軒;新型有機(jī)高分子太陽能電池制備的研究[D];西北農(nóng)林科技大學(xué);2013年

,

本文編號(hào):2238158

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/kejilunwen/dianlidianqilunwen/2238158.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cb2f5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
色妞色视频一区二区三区四区| 在线精品一区二区三区| 国产精品免费观看久久| 色鬼网| 欧美肥妇毛多水多BBXX| 久久婷婷激情综合色综合俺也去| 青娱乐极品视觉盛宴av| 99久热在线精品996热是什么| 一区二区亚洲精品精华液| 中日精品无码一本二本三本| 999精品色在线播放| 2020精品国产自在现线看| 久久精品国产亚洲AV成人| 久久成人免费a级毛片| 武隆县| av熟女人妻一区二区三区| 91欧美国产日韩精品射精| 色婷婷五月天| 被黑人猛烈进出到抽搐动态图| 精品露脸国产偷人在视频| 亚洲午夜久久久久电影网| 又大又粗又爽又黄的少妇毛片| 特级做a爰片毛片免费看无码| 夫妇交换聚会群4P大战图片| 正阳县| 人操人人| 欧美人妻精品一区二区三区| 久久精选| 国产av大全| 国产一二三四区| 深一点~我下面好爽视频| 日韩A级黄片一区二区| E99久久婷婷国产综合精品青草| 成人国内精品久久久久影院VR | 亚洲色图p| 飘零影院| 亚洲精品人成乱熟女电影在线观看| 对白| 五月天av在线| 午夜福利中文字幕| 久久久精|