基于動力非線性的隧道式錨碇力學響應分析
本文選題:隧道式錨碇 + 非線性 ; 參考:《重慶交通大學》2014年碩士論文
【摘要】:隨著國內(nèi)經(jīng)濟快速發(fā)展,生產(chǎn)方式逐漸向環(huán)境友好型轉(zhuǎn)變,可持續(xù)發(fā)展成為土木工程建設領域重要思想理念。隧道式錨碇作為懸索橋受力結(jié)構的重要部分,以其開挖量低,對環(huán)境擾動少等優(yōu)點成為理想的錨碇形式。本文基于彈塑性力學和動力學非線性基礎理論,運用有限元軟件,以普立特大橋隧道式錨碇為原型建立三維模型,,以分析計算該結(jié)構體系的受力特征和地震動力響應,并提出抗減震措施。 1利用Ansys有限元軟件的Drucker-Prager強度準則對錨區(qū)巖體進行材料定義;采用等效荷載法模擬對結(jié)構預應力;運用三維粘彈性邊界理論模擬錨區(qū)半無限介質(zhì)巖體邊界條件,以及結(jié)合Matlab軟件對輸入地震波進行快速Fourier變換和濾波處理等,為仿真分析奠定了基礎。 2計算普立特大橋隧道式錨碇模型靜載效應,驗算其常規(guī)設計荷載作用下的承載能力;分析了錨區(qū)巖體的初始應力場、錨塞體和圍巖間的初始穿透、錨塞體預應力張拉以及主纜設計張拉荷載作用下錨區(qū)巖體和錨塞體的靜力響應。 3對普立特大橋隧道式錨碇的地震動力響應進行分析?紤]錨區(qū)巖體在地震地面運動波作用下產(chǎn)生的大變形和主纜隨機變化動張拉荷載下錨塞體的響應。分析錨區(qū)巖體對水平地面運動波的響應,按照目標選取6個監(jiān)測點,對比分析應力時程響應,得到結(jié)果:錨區(qū)巖體的地震動力響應具有“辮梢”效應;坡頂質(zhì)點的振幅大于坡底質(zhì)點的振幅;錨區(qū)巖體的地震動力響應具有臨空面效應等。 4地震時,從錨塞體及洞口邊坡對主纜動張拉力荷載的響應方面考慮。以錨塞體底面4個角點及錨塞體前后錨面兩個頂點為監(jiān)測點,通過計算出來的應力及應力幅值分析,得到錨塞體前錨面質(zhì)點的響應比錨塞體后錨面質(zhì)點響應更強烈;洞口區(qū)域質(zhì)點響應比遠離洞口質(zhì)點響應強烈;在約0s~4.4s及6.35s~10.65s時間段內(nèi)錨塞體監(jiān)測點振動強烈,錨塞體和圍巖的緊密接觸導致接觸圍巖質(zhì)點塑性應變積累加劇等。 5通過錨區(qū)巖體對地震地面水平運動波的響應以及錨塞體、洞門邊坡對主纜動張拉力的響應分析結(jié)果,分析錨區(qū)巖體及隧道式錨碇的穩(wěn)定性,并針對研究結(jié)果對隧道式錨碇的抗減震措施進行了探討。
[Abstract]:With the rapid development of the domestic economy, the mode of production has gradually changed to the environment-friendly type, and sustainable development has become an important ideological concept in the field of civil engineering construction.As an important part of the structure of suspension bridge, tunnel Anchorage is an ideal Anchorage form because of its low excavation quantity and less disturbance to the environment.Based on the nonlinear theory of elasto-plastic mechanics and dynamics, a three-dimensional model is established by using finite element software, which is based on the tunnel Anchorage of Puli Bridge, to analyze and calculate the mechanical characteristics and seismic dynamic response of the structure system.The anti-vibration measures are also put forward.The main contents are as follows: 1. The Drucker-Prager strength criterion of Ansys finite element software is used to define the material of rock mass in anchor area; the equivalent load method is used to simulate the prestress of structure; the boundary condition of semi-infinite medium rock mass in anchor area is simulated by using three-dimensional viscoelastic boundary theory.The fast Fourier transform and filter processing of the input seismic wave are combined with the Matlab software, which lays a foundation for the simulation analysis.(2) the static load effect of tunnel Anchorage model of Puli super bridge is calculated, and the load-carrying capacity under conventional design load is checked, and the initial stress field of rock mass in anchor area and the initial penetration between anchor plug and surrounding rock are analyzed.The static responses of the rock mass and the anchor plug in the Anchorage zone under the action of the prestressed tension of the anchor plug and the design of the main cable.The seismic dynamic response of tunnel Anchorage of Puli Bridge is analyzed.The large deformation of rock mass in anchoring area under earthquake ground motion wave and the response of anchor plug under dynamic tension load with random variation of main cable are considered.The response of rock mass in Anchorage area to horizontal ground motion wave is analyzed. Six monitoring points are selected according to the target, and the stress time history response is compared and analyzed. The results are as follows: the seismic dynamic response of rock mass in anchor area has "braided" effect;The amplitude of the mass at the top of the slope is larger than the amplitude of the particle at the bottom of the slope, and the seismic dynamic response of the rock mass in the anchor area has the effect of face to face.The response of the anchor plug and the slope of the hole to the dynamic tension load of the main cable is considered during the earthquake.Taking the four corners of the bottom surface of the anchor plug and the two vertices of the front and rear anchor face of the anchor plug as monitoring points, through the analysis of the stress and stress amplitude, it is concluded that the response of the front anchor particle of the anchor plug is stronger than the response of the anchor surface particle behind the anchor plug.The response of particle is stronger than that of far away from the hole, and the vibration of the monitoring point of anchor plug is strong in the period of 0s~4.4s and 6.35s~10.65s, and the close contact between anchor plug and surrounding rock leads to the accumulation of plastic strain in contact with surrounding rock.(5) the stability of rock mass and tunnel Anchorage in Anchorage area is analyzed through the response of rock mass in anchor area to the horizontal motion wave of earthquake ground and the response of anchor plug and portal slope to the dynamic tension of main cable, and the stability of rock mass in anchor area and tunnel Anchorage is analyzed.The anti-vibration measures of tunnel Anchorage are also discussed.
【學位授予單位】:重慶交通大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U448.25
【參考文獻】
相關期刊論文 前10條
1 陳天紅;張伯艷;謝清榮;譚海濱;;人工合成地震波研究[J];四川建筑科學研究;2010年02期
2 肖本職;吳相超;;隧道式錨碇圍巖穩(wěn)定性研究現(xiàn)狀及探討[J];地下空間與工程學報;2006年03期
3 胡波;王思敬;曾錢幫;彭運動;劉波;劉環(huán)宇;;貴州壩陵河大橋西錨碇區(qū)圍巖穩(wěn)定性分析[J];成都理工大學學報(自然科學版);2007年04期
4 董志宏,張奇華,丁秀麗,張利潔;矮寨懸索橋隧道錨碇穩(wěn)定性數(shù)值分析[J];長江科學院院報;2005年06期
5 汪海濱;高波;;懸索橋隧道式復合錨碇承載力計算方法[J];東南大學學報(自然科學版);2005年S1期
6 劉紅石;相對誤差與Rayleigh阻尼比例系數(shù)的確定[J];湖南工程學院學報(自然科學版);2001年Z1期
7 郭彤;李愛群;王浩;;基于牛頓-拉普森迭代和零階優(yōu)化算法的懸索結(jié)構找形研究[J];工程力學;2007年04期
8 陳彰貴,羅建彬;重慶長江鵝公巖大橋東錨碇隧道錨工程的質(zhì)量控制[J];公路交通技術;2003年03期
9 鮑華,徐禮華,徐書平,周友;土-結(jié)構相互作用對基礎隔震體系地震反應的影響[J];工業(yè)建筑;2005年08期
10 但禮堂;史宏彥;;Mohr-Coulomb等面積圓屈服準則的推導[J];山西建筑;2007年18期
本文編號:1743239
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/jiaotonggongchenglunwen/1743239.html