起重機(jī)臂架的非線(xiàn)性穩(wěn)定性分析
[Abstract]:With the development of engineering construction, cranes are more and more large, towering, gentle and lattice. Because of the large use of high strength steel, the strength of the structure is improved, but the stiffness and stability of the lattice compression bar become more and more obvious. The stability analysis of complex lattice boom has become a difficult point in the design and calculation of large crane. Because the boom system of crawler crane is a spatial lattice structure, it is difficult to accurately check the stability of crawler crane by using traditional mathematical model and mechanical method. Therefore, it is necessary to seek a reasonable analysis method for the stability of crane jib to realize accurate calculation. Aiming at the practical problems mentioned above, a 160-ton prototype is taken as an example. Based on the analysis of the structural characteristics of the boom, the mechanical model of the boom is established, and the strength of the boom and the stability of the compression rod are analyzed by the model. The maximum stress of strength and stability is less than that of allowable stress of 510.4 MPa, respectively, 432.24MPa and 509.7 MPa, which meet the requirements of strength and stability of compression bar, and provide a reference for finite element software analysis. Secondly, the finite element model of the boom is established in the finite element software ANSYS, and the maximum stress is 430.291MPa. The eigenvalue buckling analysis is carried out, and the eigenvalue buckling modal shape is used as the initial defect of the nonlinear buckling analysis. The nonlinear buckling analysis of the boom shows that the maximum stress is 503828MPa, which meets the requirements of strength and stability of the compression bar. The results of finite element analysis are compared with those of the formula of crane design code, and the error is less than 2%, which verifies the correctness of finite element analysis, and analyzes the deflection force of boom. The influence of rotary inertia force and wind load factors on the nonlinear stability of the boom. Because the stress produced by the swinging force of the arm frame accounts for 32% of the total stress, the deflection force is the main factor leading to the instability of the boom, without affecting the crane efficiency. The stability of the crane with variable cross section can be improved by decreasing the speed and acceleration of the rotating crane.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王鳳萍;程磊;孫影;;國(guó)內(nèi)外履帶式起重機(jī)的現(xiàn)狀及發(fā)展趨勢(shì)[J];工程機(jī)械;2006年04期
2 張家華,王國(guó)儉;“生命始于卵”創(chuàng)意實(shí)現(xiàn)技術(shù)──上?萍汲翘粘菃螌泳W(wǎng)殼結(jié)構(gòu)非線(xiàn)性屈曲分析[J];工程設(shè)計(jì)CAD與智能建筑;2000年03期
3 韓慶華,尹越,劉錫良;焊接組合梁腹板屈曲后性能的曲殼有限元分析[J];鋼結(jié)構(gòu);1999年01期
4 楚中毅,陸念力,車(chē)仁煒,楚蘭英;一種梁桿結(jié)構(gòu)穩(wěn)定性分析的精確有限元法[J];哈爾濱建筑大學(xué)學(xué)報(bào);2002年04期
5 詹福良,楊嘉陵,黎在良;梁殼組合結(jié)構(gòu)的一種非線(xiàn)性有限元計(jì)算方法[J];航空學(xué)報(bào);2001年03期
6 朱軍,周光榮;空間桁架結(jié)構(gòu)大位移問(wèn)題的有限元分析方法[J];計(jì)算力學(xué)學(xué)報(bào);2000年03期
7 吳學(xué)松;;中國(guó)吊裝舞臺(tái)上的履帶起重機(jī)[J];建筑機(jī)械化;2007年07期
8 王欣 ,高順德 ,屈福政;國(guó)內(nèi)外大型起重機(jī)的發(fā)展?fàn)顩r[J];建筑機(jī)械;2005年02期
9 王樹(shù)華;田利芳;;履帶式起重機(jī)進(jìn)出口看點(diǎn)[J];建筑機(jī)械;2009年11期
10 林貴瑜;李?lèi)?ài)峰;;受壓桁架式吊臂設(shè)計(jì)原理的研究[J];起重運(yùn)輸機(jī)械;2007年04期
,本文編號(hào):2153884
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/jixiegongcheng/2153884.html