基于光纖光柵傳感的火炮關(guān)重件應(yīng)變測試研究
本文選題:火炮 + 應(yīng)變 ; 參考:《南京大學(xué)》2016年碩士論文
【摘要】:對火炮關(guān)鍵部件與重要部件(簡稱關(guān)重件)的動態(tài)應(yīng)變過程研究是提高火炮性能的重要方法之一,準(zhǔn)確的測試出火炮發(fā)射關(guān)重件瞬時應(yīng)變大小,可以為火炮武器系統(tǒng)的結(jié)構(gòu)強(qiáng)度與剛度設(shè)計(jì)和疲勞損傷分析提供重要參考依據(jù)。傳統(tǒng)的有限元分析法由于對火炮實(shí)際結(jié)構(gòu)進(jìn)行了部分簡化,很難對整個裝配體系進(jìn)行分析,而且這種計(jì)算結(jié)果常常因?yàn)闊o法提供測試結(jié)果對比而缺乏說服力,而基于電阻應(yīng)變片的測試方法很容易受到溫度、濕度等環(huán)境因素的影響,并且電阻應(yīng)變片和電橋電路很容易受到電磁干擾影響,該測試方法只適合于一般環(huán)境的測量,在惡劣、復(fù)雜環(huán)境的測量難以獲得準(zhǔn)確的結(jié)果。本文通過研究基于光纖光柵傳感的應(yīng)變測試方法,首次提出利用光纖光柵傳感技術(shù)進(jìn)行火炮關(guān)重件應(yīng)變測試;诠饫w光柵傳感設(shè)計(jì)并開展萬能實(shí)驗(yàn)機(jī)拉伸實(shí)驗(yàn)、等強(qiáng)度懸臂梁實(shí)驗(yàn)和應(yīng)變與溫度的分離測量實(shí)驗(yàn),通過對比基于電阻應(yīng)變片、基于數(shù)字圖像和基于光纖傳感的三種應(yīng)變測試方法的實(shí)驗(yàn)結(jié)果,驗(yàn)證了光纖傳感技術(shù)在應(yīng)變測量領(lǐng)域的可行性與準(zhǔn)確性。在此基礎(chǔ)上開展霍普金森壓桿超高速應(yīng)變測試和開展某火炮樣機(jī)實(shí)彈射擊關(guān)重件動態(tài)應(yīng)變測試,完成了不確定度評定,驗(yàn)證了光纖光柵應(yīng)變測試數(shù)據(jù)的準(zhǔn)確性與測試方法的優(yōu)越性。本文首次在國內(nèi)利用基于光纖光柵傳感的應(yīng)變測試方法開展火炮關(guān)重件動態(tài)應(yīng)變測試,不僅為火炮武器系統(tǒng)的結(jié)構(gòu)強(qiáng)度與剛度設(shè)計(jì)和疲勞損傷分析提供重要參考依據(jù),同時突破了傳統(tǒng)應(yīng)變片測試方法的抗干擾難題,為電磁炮等具有較強(qiáng)電磁干擾源的武器裝備關(guān)重件應(yīng)變測試提供了創(chuàng)新方法,豐富了火炮應(yīng)變測試的技術(shù)手段。
[Abstract]:The study on the dynamic strain process of the key components and important parts of the artillery is one of the most important methods to improve the performance of the artillery. The accurate measurement of the instantaneous strain size of the gun launches the closed parts can provide an important reference for the structural strength and stiffness design and fatigue damage analysis of the artillery weapon system. It is difficult to analyze the whole assembly system because of the partial simplification of the actual structure of the artillery, and the results are often lack of persuasion because of the inability to provide test results. And the resistance strain gauge based testing method is easily affected by temperature, humidity and other environmental factors, and the resistance strain gauge. The electric bridge circuit is easily affected by electromagnetic interference. The test method is only suitable for the general environment measurement, and it is difficult to obtain accurate results in the harsh and complex environment measurement. In this paper, the strain test of the artillery heavy parts is first proposed by fiber Bragg grating sensing technology by studying the strain testing method based on Fiber Bragg grating sensing. Based on the fiber Bragg grating sensing design, the tensile experiment of the universal experimental machine, the experiment of the equal strength cantilever beam experiment and the separation of strain and temperature are carried out. By comparing the experimental results based on the resistance strain gauge, digital image and fiber sensing based three strain testing methods, the fiber sensing technology is verified in the field of strain measurement. On the basis of the feasibility and accuracy, the Hopkinson compression rod ultra high speed strain test and the dynamic strain test of a gun prototype real bullet are carried out, the uncertainty evaluation is completed, and the accuracy of the fiber grating strain test data and the superiority of the test method are verified. The first time in this paper is based on Fiber Bragg grating in China. The dynamic strain test of the artillery heavy parts is carried out by the sensor strain testing method. It not only provides important reference for the structural strength and stiffness design and fatigue damage analysis of the artillery weapon system, but also breaks through the anti interference problem of the traditional strain gauge test method, and is a heavy part with strong electromagnetic interference source, such as electromagnetic cannon. Strain testing provides an innovative way to enrich the technical means of gun strain testing.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TJ306;TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊玉良;秦俊奇;狄長春;孫也尊;馬亮星;;實(shí)彈射擊與炮口沖擊條件下炮架動態(tài)應(yīng)力測試分析[J];火炮發(fā)射與控制學(xué)報;2015年03期
2 程世虎;徐國權(quán);;光纖光柵傳感技術(shù)在露天礦邊坡監(jiān)測的應(yīng)用[J];銅業(yè)工程;2015年04期
3 劉繼權(quán);;光纖光柵在開關(guān)柜溫度監(jiān)測中的應(yīng)用研究[J];電工技術(shù);2013年04期
4 董娟娟;余成發(fā);汪萍;;專色油墨配色的顏色測量和不確定度評定[J];長春教育學(xué)院學(xué)報;2013年01期
5 柯志鵬;;電阻應(yīng)變測量論述[J];科技風(fēng);2012年11期
6 李亞東;鄭堅(jiān);賈長治;唐平建;;基于隨機(jī)響應(yīng)面法的扭力軸疲勞壽命仿真預(yù)測[J];系統(tǒng)仿真學(xué)報;2011年09期
7 唐正宗;梁晉;肖振中;郭成;;用于三維變形測量的數(shù)字圖像相關(guān)系統(tǒng)[J];光學(xué)精密工程;2010年10期
8 宮經(jīng)寬;劉樾;;光纖傳感器及其應(yīng)用技術(shù)[J];航空精密制造技術(shù);2010年05期
9 王寶元;陳順德;周發(fā)明;衡剛;郭e,
本文編號:1957193
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/zidonghuakongzhilunwen/1957193.html