a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當(dāng)前位置:主頁 > 碩博論文 > 工程碩士論文 >

聚N-異丙基丙烯酰胺基高強(qiáng)度水凝膠的制備及性能研究

發(fā)布時(shí)間:2019-04-23 19:37
【摘要】:水凝膠作為一種功能高分子材料,由于具有高吸水性、良好的生物相容性和刺激響應(yīng)能力,被廣泛應(yīng)用于生物組織工程、藥物控制釋放、廢水處理、化學(xué)機(jī)械器件、生活用品等領(lǐng)域。傳統(tǒng)水凝膠響應(yīng)速率慢、易碎等缺點(diǎn)嚴(yán)重限制了水凝膠的應(yīng)用范圍。因此提高水凝膠的響應(yīng)速率和力學(xué)性能成為該領(lǐng)域的研究熱點(diǎn)。本文以N-異丙基丙烯酰胺基水凝膠為主要研究對(duì)象,采用不同的改性手段,通過添加無機(jī)粒子、加入制孔劑、引進(jìn)互穿網(wǎng)絡(luò)結(jié)構(gòu)等方式,分別合成出納米復(fù)合凝膠、多孔結(jié)構(gòu)水凝膠和互穿網(wǎng)絡(luò)水凝膠,研究了新型水凝膠的溶脹性能和力學(xué)性能等。本論文主要研究?jī)?nèi)容如下:1.采用自由基溶液聚合法,將帶C=C的籠型倍半硅氧烷(MAPOSS)加入N-異丙基丙烯酰胺(NIPAM)單體中,聚乙二醇二丙烯酸酯(PEGDA)充當(dāng)交聯(lián)劑的作用,制備POSS改性P(NIPAM-co-PEGDA)的納米復(fù)合水凝膠。水凝膠的壓縮強(qiáng)度隨MAPOSS和PEGDA的增加而顯著提升,當(dāng)體系中MAPOSS和PEGDA的含量達(dá)到最大時(shí),水凝膠的壓縮強(qiáng)度達(dá)到368.32 kPa,這主要是因?yàn)镸APOSS固有的剛性籠型結(jié)構(gòu)增加了聚合物分子鏈的硬度,PEGDA的增多能夠提高體系的交聯(lián)密度。此外,MAPOSS的增加和PEGDA的減少均能提升水凝膠的退溶脹率,當(dāng)體系中MAPOSS含量最多、PEGDA含量最少時(shí),水凝膠在30min內(nèi)的失水率為60.7%,退溶脹速率最快。2.以聚乙二醇(PEG)為制孔劑,加入到經(jīng)過無機(jī)粒子改性的P(NIPAM-coMAPOSS)水凝膠中,考察制孔劑對(duì)多孔結(jié)構(gòu)水凝膠的影響。不含PEG的水凝膠幾乎看不出孔洞結(jié)構(gòu);當(dāng)PEG含量達(dá)到0.3g時(shí),水凝膠的孔結(jié)構(gòu)十分明顯。PEG的加入有助于孔洞的產(chǎn)生,而且平均孔徑隨PEG含量的增加而增大。隨著PEG的增加,水凝膠的壓縮模量呈現(xiàn)先增大后減小的趨勢(shì),當(dāng)PEG含量為0.1g時(shí),水凝膠的力學(xué)性能最好。水凝膠的退溶脹率隨PEG含量的增加而增大,這是因?yàn)槌サ闹瓶讋樗肿拥纳⑹峁┝送ǖ?使水凝膠的退溶脹率明顯提高。以5-氟尿嘧啶(5-FU)為模型藥物的緩釋實(shí)驗(yàn)表明,可以通過調(diào)整PEG的含量,控制水凝膠對(duì)藥物的釋放。3.通過化學(xué)交聯(lián)反應(yīng)和互穿網(wǎng)絡(luò)技術(shù),將聚乙烯吡絡(luò)烷酮(PVP)引入到P(NIPAM-co-AA)水凝膠網(wǎng)絡(luò)結(jié)構(gòu)中,制備出具有溫度/pH雙重敏感性的P(NIPAM-co-AA)/PVP互穿網(wǎng)絡(luò)結(jié)構(gòu)水凝膠。紅外光譜圖和差示掃描圖像證明了水凝膠中互穿網(wǎng)絡(luò)結(jié)構(gòu)的形成。與未加入PVP的水凝膠相比,PVP含量為0.1g時(shí)水凝膠的熔融溫度有了小幅度提高,達(dá)到215°C。當(dāng)水凝膠應(yīng)變?yōu)?0%時(shí),未加入PVP的水凝膠的壓縮模量為0.24 MPa,而PVP含量為0.1g的水凝膠的壓縮模量提高到0.36 MPa,證明了互穿網(wǎng)絡(luò)結(jié)構(gòu)的形成有助于提高水凝膠的力學(xué)性能。以5-FU為模型藥物,PVP含量為0.1g的水凝膠的持續(xù)釋藥時(shí)間達(dá)到9小時(shí)以上,累積釋藥率達(dá)到84.5%。
[Abstract]:As a kind of functional polymer material, hydrogel is widely used in biological tissue engineering, drug controlled release, wastewater treatment, chemical and mechanical devices due to its high water absorption, good biocompatibility and stimulation response. Areas such as household goods. The disadvantages of traditional hydrogels, such as slow response rate and fragility, seriously limit the application range of hydrogels. Therefore, improving the response rate and mechanical properties of hydrogels has become a hot topic in this field. In this paper, N-isopropylacrylamide hydrogel was used as the main research object, nano-composite gel was synthesized by adding inorganic particles, adding pore-making agent, introducing interpenetrating network structure and so on, by means of different modification methods, such as adding inorganic particles, adding pore-making agent, introducing interpenetrating network structure, etc. Porous hydrogels and interpenetrating network hydrogels were used to study the swelling and mechanical properties of the new hydrogels. The main contents of this thesis are as follows: 1. The cage silsesquioxane (MAPOSS) with C C was added into N-isopropylacrylamide (NIPAM) monomer by free radical solution polymerization. Polyethylene glycol diacrylate (PEGDA) was used as cross-linking agent. POSS modified P (NIPAM-co-PEGDA) nanocomposite hydrogels were prepared. The compressive strength of hydrogels increased significantly with the increase of MAPOSS and PEGDA. When the contents of MAPOSS and PEGDA reached the maximum, the compressive strength of hydrogels reached 368.32 kPa,. The main reason is that the inherent rigid cage structure of MAPOSS increases the hardness of polymer molecular chain, and the increase of PEGDA can improve the crosslinking density of the system. In addition, both the increase of MAPOSS and the decrease of PEGDA can increase the swelling ratio of hydrogel. When the content of MAPOSS is the highest and the content of PEGDA is the least, the water loss rate of hydrogel in 30min is 60.7%, and the rate of deswelling is the fastest. Polyethylene glycol (PEG) was added to P (NIPAM-coMAPOSS) hydrogel modified by inorganic particles, and the effect of pore-making agent on porous structure hydrogel was investigated. When the content of PEG is 0.3g, the pore structure of hydrogel is very obvious. The addition of PEG is helpful to the formation of pores, and the average pore size increases with the increase of PEG content. With the increase of PEG, the compressive modulus of hydrogels increases first and then decreases. When the content of PEG is 0.1g, the mechanical properties of hydrogels are the best. The swelling ratio of hydrogel increases with the increase of PEG content because the removed pore-making agent provides a channel for the loss of water molecules and increases the swelling rate of hydrogel obviously. The sustained release experiment with 5-fluorouracil (5-FU) as model drug showed that the release of 5-fluorouracil (PEG) could be controlled by adjusting the content of 5-fluorouracil (PEG). Polyvinylpyrrolidone (PVP) was introduced into the network structure of P (NIPAM-co-AA) hydrogel by chemical crosslinking reaction and interpenetrating network technique. P (NIPAM-co-AA) / pH interpenetrating hydrogels with temperature / PVP double sensitivity were prepared. Infrared spectra and differential scanning images demonstrate the formation of interpenetrating network structure in hydrogels. Compared with the hydrogels without adding PVP, the melting temperature of the hydrogels increased slightly to 215 擄C. when the content of PVP was 0.1g, the melting temperature of the hydrogels was increased to 215C. When the strain of hydrogel is 20%, the compressive modulus of hydrogel without adding PVP is 0.24 MPa, and that of hydrogel containing 0.1g PVP is 0.36 MPa,. It is proved that the formation of interpenetrating network structure is helpful to improve the mechanical properties of hydrogels. With 5-FU as model drug, the sustained release time of hydrogel with 0.1g PVP content was over 9 hours, and the cumulative release rate was 84.5%.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ427.26

【相似文獻(xiàn)】

相關(guān)期刊論文 前7條

1 楊珍娥;李國(guó)明;程利霞;錢程根;;聚氨酯/聚丙烯酸酯互穿網(wǎng)絡(luò)結(jié)構(gòu)聚合物的制備[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期

2 郭新章;黃永勤;范春山;;半互穿聚合物網(wǎng)絡(luò)耐高溫膠粘劑的研究[J];粘合劑;1990年04期

3 劉錦;施建剛;趙振河;;核-殼型互穿網(wǎng)絡(luò)結(jié)構(gòu)WPUA的制備[J];印染;2014年02期

4 劉蓬;焦劍;蔡宇;;纖維增強(qiáng)介孔SiO_2/環(huán)氧樹脂復(fù)合材料的研究[J];粘接;2014年07期

5 孔憲明,張玉貞;高聚物與瀝青體系的IPN結(jié)構(gòu)[J];武漢工業(yè)大學(xué)學(xué)報(bào);2000年01期

6 張斌,羅運(yùn)軍;含有互穿網(wǎng)絡(luò)結(jié)構(gòu)的丁腈橡膠改性環(huán)氧/酚醛膠粘劑的合成及其應(yīng)用[J];中國(guó)膠粘劑;2005年04期

7 曾尤,王瑞春,谷亞新,劉運(yùn)學(xué),趙金波;PU彈性網(wǎng)絡(luò)對(duì)PAM凝膠吸水/脫水行為的影響[J];沈陽建筑工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年03期

相關(guān)會(huì)議論文 前6條

1 馮勝山;王澤建;劉慶豐;許順紅;;互穿網(wǎng)絡(luò)結(jié)構(gòu)陶瓷/金屬?gòu)?fù)合材料的研究進(jìn)展[A];2008中國(guó)鑄造活動(dòng)周論文集[C];2008年

2 辛海鵬;陳浩;張旭;冀陽;趙慎龍;殷碩;譚業(yè)邦;;有機(jī)/無機(jī)復(fù)合交聯(lián)膠態(tài)分散凝膠體系的合成與表征[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年

3 辛海鵬;陳浩;敖敦;殷碩;王小金;譚業(yè)邦;;有機(jī)-無機(jī)復(fù)合交聯(lián)膠態(tài)分散凝膠的流變性能研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第18分會(huì)場(chǎng)摘要集[C];2012年

4 唐亞昆;劉浪;賈殿贈(zèng);王省超;楊銀叢;;互穿網(wǎng)絡(luò)結(jié)構(gòu)CNT@TiO_2多孔納米復(fù)合材料[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第24分會(huì):化學(xué)電源[C];2014年

5 賴恩平;王玉霞;馬光輝;李光;;半互穿網(wǎng)絡(luò)結(jié)構(gòu)雙敏微球的制備及其性質(zhì)[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題F:功能高分子[C];2013年

6 李娟;譚業(yè)邦;;耐溫互穿網(wǎng)絡(luò)結(jié)構(gòu)水凝膠的制備與表征[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第08分會(huì):高分子科學(xué)[C];2014年

相關(guān)碩士學(xué)位論文 前2條

1 林晶;三維互穿網(wǎng)絡(luò)結(jié)構(gòu)Al/RSiC復(fù)合材料的制備及性能研究[D];湖南大學(xué);2015年

2 侯小曼;聚N-異丙基丙烯酰胺基高強(qiáng)度水凝膠的制備及性能研究[D];吉林大學(xué);2017年



本文編號(hào):2463740

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/boshibiyelunwen/2463740.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a0f09***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产激情久久久久影院老熟女| 中国色| 无码专区永久免费av网站| 亚洲一区二区三区中文字幂| 国产精品久久国产精品99盘| 无码专区人妻系列日韩精品少妇 | 精人妻无码一区二区三区| 粗大黑人巨精大战欧美成人| 蜜臀久久99精品久久久久久小说 | 久色谷| AV无码专区| 免费无遮挡无码视频在线观看| 亚洲中久无码永久在线观看软件 | 我爱av| 在线色av| 色播av| 风间由美交换夫中文字幕| 久久九九视频| 国产成人免费| 国产干逼视频| 亚洲一区二区在线观看| 久久国产精品二国产精品| 精品国产亚洲第一区二区三区| 午夜一区欧美二区高清三区| 精品国偷自产在线视频99| 精品无码一区二区视频男人吃奶| 国产电影无码午夜在线播放| 特级av毛片免费观看| 人妻少妇精品无码专区APP| 国产精品va无码免费| 浮妇高潮喷白浆视频| 亚洲婷婷六月的婷婷| 孟州市| 欧美最猛性xxxxx免费| 亚洲国产成人精品综合av| 精品无码国产一区二区三区AV| 717理论片午影院无码| 日本免费一区二区三区| 国产精品VⅠDEOXXXX国产| 久久精品AⅤ无码中文字字幕不卡| 国产成人无码AV|