基于共測(cè)量軌跡的快速外差激光干涉儀動(dòng)態(tài)校準(zhǔn)關(guān)鍵技術(shù)
[Abstract]:Heterodyne laser interferometer is an important displacement measurement method in the fields of ultra-precision engineering and nanotechnology. The calibration of dynamic displacement measurement of heterodyne laser interferometer is a necessary technical means to ensure its dynamic displacement measurement accuracy and realize its traceability and standardization. With the development of heterodyne laser interferometer, there is an urgent need for high precision and fast dynamic displacement measurement and calibration methods and techniques. In order to solve the calibration problems of cosine, Abbe, air refractive index difference error and data delay error in calibration, a method of dynamic displacement measurement and calibration of heterodyne laser interferometer based on common measurement trajectory is proposed in this paper. The method of data delay error calibration based on common measurement trajectory is also presented. The main research contents are as follows: 1. Aiming at the problem of Abbe and air refractive index difference error in calibration, a method of dynamic displacement measurement and calibration of heterodyne laser interferometer based on common measuring trajectory is proposed. Based on the displacement measurement model of the standard interferometer, the displacement calibration model of the common measurement trajectory calibration method and the error model of the air refractive index difference are established. The model is established by analysis. The results show that Abbe error is less than 2 nm and air refractive index difference error is less than 1 nm.2 in the range of 10 m displacement. A dual-spot position detection unit for beam direction vector detection and a double-wedge mirror assembly with beam direction vector adjustment are set up. The corresponding beam direction vector measurement model and beam direction vector adjustment model are established. On the basis of obtaining beam direction vector, the beam direction can be adjusted to the target direction by two-dimensional rotation without coupling. The precise adjustment of optical axis parallelism can not only suppress the cosine error in calibration, but also provide a technical guarantee to suppress the difference of refractive index between Abbe and air in calibration. The analysis shows that this method can realize 2 "optical axis parallelism adjustment, and make the cosine error less than 0.1 nm.3 in the range of 10 m displacement. In this paper, a method of data delay error calibration based on common measurement trajectory calibration is proposed. By analyzing the data delay error model of interferometer displacement measurement, a calibration model of data delay error is proposed and studied. According to the principle of the model, the difference of instantaneous calibration results during acceleration is used to calibrate the common measurement trajectory. On the premise of calibration, the data delay error calibration of the resolution level of the interferometer is realized, which provides a necessary foundation for the further study of the data delay error calibration of the interferometer. The experimental results show that the calibration accuracy of the data delay error is better than 3 nm, and the calibration accuracy of the data delay time is better than 5 ns. A dynamic displacement measurement and calibration system of heterodyne laser interferometer based on common measuring trajectory is established. The method of adjusting the optical axis parallelism is experimentally verified. The experimental results show that the detection accuracy of the beam direction is 1 ", the adjusting accuracy is 2" and the adjustment requirement of the optical axis parallelism is satisfied. The model is validated by experiments, which proves that the method can effectively suppress the air refractive index difference error, Abbe and cosine error in calibration. The experimental results show that the model value of air refractive index difference error is 13% deviated from the experimental value in the range of 10 m displacement, and the deviation relation can be obtained. The error of emissivity difference is less than 1.2 nm; the deviations of Abbe and cosine errors from the experimental values are 2 *10-9 for the wavelength stability of the calibrated interferometer; the calibration repeatability of the proposed method is better than 20 nm.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH744.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;研制高新產(chǎn)品 弘揚(yáng)太科激情 太科光電在蓉召開“激光干涉儀產(chǎn)品研討會(huì)”[J];光學(xué)學(xué)報(bào);2002年10期
2 Konrad Mücke;;用激光干涉儀實(shí)現(xiàn)高精度定位[J];世界制造技術(shù)與裝備市場(chǎng);2007年03期
3 魏純;;激光干涉儀使用技巧[J];計(jì)量與測(cè)試技術(shù);2007年10期
4 林大華;余培英;宋增超;謝東;;激光干涉儀在速度校準(zhǔn)中的應(yīng)用[J];船舶工程;2012年S1期
5 ;激光干涉儀打破了一微時(shí)的記錄[J];儀器儀表通訊;1971年02期
6 ;5525B激光干涉儀[J];磨床與磨削;1974年01期
7 裘惠孚;張學(xué)能;;工廠實(shí)用型激光干涉儀[J];計(jì)量技術(shù);1990年06期
8 裘惠孚;激光干涉儀作為工廠長度標(biāo)準(zhǔn)的探討和實(shí)踐[J];機(jī)械工人.冷加工;1991年07期
9 丁和;;采用光纖的小型激光干涉儀[J];工具技術(shù);1993年08期
10 大舟;微型激光干涉儀[J];光機(jī)電信息;1995年08期
相關(guān)會(huì)議論文 前10條
1 李偉;;激光干涉儀在測(cè)量過程中所產(chǎn)生的誤差及消除辦法[A];第四屆十三省區(qū)市機(jī)械工程學(xué)會(huì)科技論壇暨2008海南機(jī)械科技論壇論文集[C];2008年
2 楊玉潔;姜國雁;劉濤;胡榮輝;;量塊激光干涉儀的研制[A];第九屆沈陽科學(xué)學(xué)術(shù)年會(huì)論文集(信息科學(xué)與工程技術(shù)分冊(cè))[C];2012年
3 郭秀琪;;用激光干涉儀波長檢定接觸式干涉單色濾光片波長的方法[A];貴州省科學(xué)技術(shù)優(yōu)秀學(xué)術(shù)論文集(2004年度)[C];2004年
4 曹利波;;利用激光干涉儀對(duì)機(jī)床定位精度的快速檢測(cè)[A];高精度幾何量光電測(cè)量與校準(zhǔn)技術(shù)研討會(huì)論文集[C];2008年
5 方明;;激光干涉儀在水平儀檢定器檢定中的運(yùn)用[A];江蘇計(jì)量測(cè)試學(xué)術(shù)論文集(2009)[C];2009年
6 黃濤;朱秋東;魏平;;數(shù)字激光干涉儀中基于FPGA的視頻圖像預(yù)處理[A];第三屆全國數(shù)字成像技術(shù)及相關(guān)材料發(fā)展與應(yīng)用學(xué)術(shù)研討會(huì)論文摘要集[C];2004年
7 葉孝佑;高宏堂;高思田;陳允昌;;實(shí)現(xiàn)納米測(cè)量分辨力的激光干涉儀信號(hào)處理系統(tǒng)[A];2007'中國儀器儀表與測(cè)控技術(shù)交流大會(huì)論文集(二)[C];2007年
8 榮飄;張淳民;;Fizeau型激光干涉儀在面形檢測(cè)中的應(yīng)用[A];2013年(第五屆)西部光子學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
9 王廣宇;洪延姬;葉繼飛;;激光干涉儀測(cè)微沖量原理[A];慶祝中國力學(xué)學(xué)會(huì)成立50周年暨中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
10 陳杰;高麗;莊革;;J-TEXT遠(yuǎn)紅外激光干涉儀的建立[A];中國核科學(xué)技術(shù)進(jìn)展報(bào)告——中國核學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷·第7冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 毛帥;基于共測(cè)量軌跡的快速外差激光干涉儀動(dòng)態(tài)校準(zhǔn)關(guān)鍵技術(shù)[D];哈爾濱工業(yè)大學(xué);2017年
2 梁浴榕;外差激光干涉儀中的高精度相位測(cè)量研究[D];華中科技大學(xué);2013年
3 黎永前;納米精度測(cè)量與校準(zhǔn)系統(tǒng)關(guān)鍵技術(shù)研究[D];西北工業(yè)大學(xué);2003年
4 湯彪;高精度原子干涉儀主動(dòng)隔振系統(tǒng)的實(shí)驗(yàn)研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2014年
5 任曉;外差干涉儀非線性相位補(bǔ)償方法及其實(shí)現(xiàn)技術(shù)的研究[D];上海大學(xué);2015年
6 李棟;SU(1,1)干涉儀中相位估值的研究[D];華東師范大學(xué);2016年
7 沈靜;中高層大氣風(fēng)場(chǎng)探測(cè)多普勒非對(duì)稱空間外差技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2017年
8 李超;新型光纖模式干涉儀傳感特性及復(fù)合參數(shù)測(cè)量的研究[D];北京交通大學(xué);2017年
9 龍世同;基于~(85)Rb-~(87)Rb雙組分冷原子干涉儀的弱等效原理檢驗(yàn)的實(shí)驗(yàn)研究[D];中國科學(xué)院大學(xué)(中國科學(xué)院武漢物理與數(shù)學(xué)研究所);2017年
10 忻俊;基于銣原子系綜四波混頻過程的非線性SU(1,1)干涉儀的研究[D];華東師范大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 張際波;HCN激光干涉儀功率的自動(dòng)反饋控制及遠(yuǎn)程控制[D];天津理工大學(xué);2016年
2 胡高山;基于激光干涉儀的微位移測(cè)量系統(tǒng)研究[D];沈陽建筑大學(xué);2014年
3 于乃昭;激光干涉儀在低頻微小振動(dòng)測(cè)量中的應(yīng)用[D];哈爾濱工程大學(xué);2011年
4 鄒建忠;激光干涉儀跟蹤式無導(dǎo)軌測(cè)量的研究[D];西安理工大學(xué);2001年
5 裴揚(yáng);一種基于光纖端面檢測(cè)的激光干涉儀優(yōu)化設(shè)計(jì)的研究[D];南昌航空大學(xué);2014年
6 陳力立;基于激光干涉儀的時(shí)柵傳感器全自動(dòng)控測(cè)系統(tǒng)[D];重慶理工大學(xué);2012年
7 孫拉拉;能量天平位移測(cè)量系統(tǒng)研制[D];合肥工業(yè)大學(xué);2009年
8 黃根旺;斐索型移相式激光干涉儀研究[D];哈爾濱工業(yè)大學(xué);2011年
9 朱榮芳;基于ARM的激光干涉儀抗振技術(shù)研究[D];南京理工大學(xué);2014年
10 來展;激光干涉儀信號(hào)處理系統(tǒng)及納米測(cè)量機(jī)控制系統(tǒng)的研究[D];中國計(jì)量科學(xué)研究院;2011年
,本文編號(hào):2194852
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/gckjbs/2194852.html