高質(zhì)量ZnO薄膜的MOCVD外延生長與原位摻雜
[Abstract]:The exciton binding energy of the ZnO material is 60meV, a wide band gap semiconductor with superior photoelectric properties. It has an important application prospect in the UV detector and the laser and other short wave long light electrical appliances. However, the P doping problem of ZnO is still the biggest obstacle in its practical application. The nitrogen element is the most widely recognized at present. It is successful to achieve stable and efficient P doped elements of ZnO, so we hope to study the doping mechanism and defect behavior of N in ZnO, and to study the effect of annealing process on the microstructure and photoelectric properties of the materials, and to provide a scientific and feasible way of thinking and method for realizing the leading problem of P ZnO conduction, the.ZnO material is a kind of polar oxide. Semiconductors. Because of the physical and chemical properties of the O and Zn surface polarity ZnO materials, such as doping efficiency, surface morphology, electrical transport, surface adsorption, surface reconstruction and defects, luminescence properties and Schottky contact, polarity control has a very important effect on the material quantity and the performance of the final photoelectric device. The polarity control of ZnO by different preconditioning methods is the key prerequisite for obtaining high quality ZnO materials. Therefore, we studied the effects of different pretreatments on ZnO polarity, epitaxial mode and impurity pollution, and then optimized the growth conditions to realize the two-dimensional layered epitaxy of high quality ZnO. In addition, the intermediate band solar cells have the structure. The advantages of simple, low cost and very high theoretical efficiency have good prospects. The high mismatched alloy system based on III - V and II - VI is the focus of the research on the intermediate band photovoltaic materials. Both theory and experiment have proved the existence of the ZnTe:O and GaAs:N intermediate bands. The preparation of high quality ZnTe:O single crystal films is also the focus of this paper. The main achievements of this paper are as follows: 1, high quality ZnO single crystal films were prepared on ZnO single crystal substrate by MOCVD method. The effects of substrate polarity and substrate preprocessing temperature on the growth mode, surface morphology, crystal quality, defect formation, impurity concentration and luminescence properties were investigated. The surface ZnO substrate is easy to induce two-dimensional layer epitaxy growth. The surface has atomic level flatness, and it effectively inhibits the unintentional carbon doping caused by the low temperature growth of MOCVD. It has better ultraviolet luminescence characteristics. The high pretreatment temperature will lead to the serious desorption of the surface defects on the substrate surface, thus affecting the subsequent two-dimensional layer. It is found that the pretreatment of Zn polar surface ZnO single crystal substrate at 1000 C is the most suitable condition for achieving high quality ZnO homogeneity epitaxy.2. MOCVD method is used to prepare high quality ZnO:N film on the ZnO template substrate by in-situ doping. The properties and behavior of compensating donor in the material are studied and the method of rapid thermal annealing is successful. The potential acceptor in ZnO:N is activated by C-V measurement and the P type conductivity is observed. The effect of N doping and subsequent annealing on the structure of material defects is revealed by means of Hall measurement, variable temperature photoluminescence spectrum and Raman scattering. The study shows that the No-Zni complex and Zni cluster are the main compensation donors in ZnO:N, and NHx occupies Zn bit or N2 in ZnO:N. According to the Zn position is a possible stable shallow recipient, annealing leads to the formation of the gap zinc defect clusters, and decomposes and departs.3 at high temperature. The ZnO intrinsic defect (Zni, VZn) is studied by the MOCVD method Co doped ZnO samples and annealed in the way of ZnO. The.Zni cluster is a shallow donor in ZnO, and in Te-N Co doped ZnO and fast annealing samples. There is a stable presence in the product. It is found that Te-N co doping in the inhibition of the intrinsic defect Zni clusters has played an obvious role. Possible shallow recipients are No-Zn-Te, VZn-No complex and Vzn clusters, and separate Zni and VZn may be combined and diffuse at high temperatures and leave the lattice. However, the individual Zni and VZn clusters are doped in N elements. It may be stable in the environment. In the N doped ZnO thin film, a suitable design to increase the VZn cluster and inhibit Zni and Zni clusters is a possible way to form a stable and reliable P type ZnO material,.4. By the MOCVD method, ZnTe:O high mismatch alloy single crystal is prepared by the extension of the low temperature non equilibrium condition on the c axis sapphire. The thermal annealing of the materials was studied and the effects of in-situ oxygen doping and thermal annealing on the microstructure, chemical valence bond state and intermediate band luminescence characteristics were studied. It was found that the in-situ oxygen doping did not cause serious distortion of the lattice and even produced other material phases. The properties of the single crystal showed the preparation method of MOCVD. Technical advantage. Through the face cover annealing optimization method, the surface of ZnTe:O is effectively avoided and the crystal structure quality of the material is improved. At the same time, the intermediate energy band with oxygen and other electron traps is formed at the same time to 1.9eV, and the result is high with the result calculated with the non cross model. Optimization of the preparation conditions of MOCVD and the annealing treatment method It is beneficial to realize the transition from the non radiation compound to the extended state of the radiation compound, which is possible to improve the conversion efficiency of the ZnTe:O based middle band solar cells.
【學位授予單位】:南京大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TN304.055
【相似文獻】
相關(guān)期刊論文 前10條
1 王浩,范廣涵,廖?;MOCVD生長的動力學模式探討[J];華南師范大學學報(自然科學版);2003年02期
2 胡曉宇;GaN-MOCVD設備的發(fā)展現(xiàn)狀及產(chǎn)業(yè)化思考[J];新材料產(chǎn)業(yè);2003年12期
3 ;第八屆全國MOCVD學術(shù)會議通知[J];液晶與顯示;2003年01期
4 ;MOCVD技術(shù)[J];電子元件與材料;2004年12期
5 陳燕,王軍鋒,羅惕乾;MOCVD反應器的優(yōu)化及其數(shù)學模型的建立[J];中國農(nóng)機化;2004年06期
6 聶宇宏;劉勇;姚壽廣;;徑向三重流MOCVD反應器壁面溫度的數(shù)值模擬[J];半導體學報;2007年01期
7 ;Effects of growth interruption on the properties of InGaN/GaN MQWs grown by MOCVD[J];Optoelectronics Letters;2007年01期
8 徐謙;楊麗英;張紅;;MOCVD反應器輸運過程的研究綜述與展望[J];裝備制造技術(shù);2007年10期
9 劉磁輝;劉秉策;付竹西;;Electrical and deep levels characteristics of ZnO/Si heterostructure by MOCVD deposition[J];Chinese Physics B;2008年06期
10 鐘樹泉;任曉敏;王琦;黃輝;黃永清;張霞;蔡世偉;;MOCVD反應器熱流場的數(shù)值模擬研究[J];人工晶體學報;2008年06期
相關(guān)會議論文 前10條
1 高鴻楷;;MOCVD技術(shù)在中國[A];第十一屆全國MOCVD學術(shù)會議論文集[C];2010年
2 M.Heuken;;Next Generation MOCVD Technology with Improved Productivity for LED Production[A];第十一屆全國MOCVD學術(shù)會議論文集[C];2010年
3 ;An Investigation of Scalability of a Buffered Distributed Spray MOCVD Reactor by Numerical Analysis[A];第十一屆全國MOCVD學術(shù)會議論文集[C];2010年
4 ;370nm UV Electroluminescence from ZnO Based Heterojunction Light-emitting Diodes by Using MOCVD Deposited n-GaN as Substrate[A];第十一屆全國MOCVD學術(shù)會議論文集[C];2010年
5 李靜波;張維敬;李長榮;杜振民;;MOCVD的熱力學分析[A];第九屆全國相圖學術(shù)會議論文集[C];1997年
6 孟廣耀;;MOCVD科學與技術(shù)50年回顧與展望[A];第十二屆全國MOCVD學術(shù)會議論文集[C];2012年
7 H.Wang;Y.-Y.Fang;S.L.Li;Z.H.Wu;J.N.Dai;C.Q.Chen;;Study of the properties of GaN quantum dots grown on AIN templates by MOCVD[A];第十二屆全國MOCVD學術(shù)會議論文集[C];2012年
8 Li-Gong Li;Shu-Man Liu;Shuai Luo;Tao Yang;Xiao-Ling Ye;Li-Jun Wang;Bo Xu;Feng-Qi Liu;Zhan-Guo Wang;;Growth of InAs/GaSb type-Ⅱ superlattices by MOCVD[A];第十二屆全國MOCVD學術(shù)會議論文集[C];2012年
9 Yibin Yang;Peng Xiang;Minggang Liu;Weijie Chen;Tufu Chen;Weimin Yang;Yunqian Wang;Yuan Ren;Xiaorong Zhang;Yan Lin;Guoheng Hu;Gangwei Hu;Xiaobiao Han;Zhisheng Wu;Yang Liu;Baijun Zhang;;Improvement of GaN Quality on Si(111) Using SiN_x Interlayer by MOCVD[A];第十二屆全國MOCVD學術(shù)會議論文集[C];2012年
10 ;歷屆全國MOCVD會議一覽[A];第十二屆全國MOCVD學術(shù)會議論文集[C];2012年
相關(guān)重要報紙文章 前10條
1 ;全球MOCVD設備熱銷背后的解讀[N];電子資訊時報;2006年
2 記者 宋元東;“傍”上中科院 兩公司分羹MOCVD國產(chǎn)化項目[N];上海證券報;2011年
3 柯科;國內(nèi)首臺MOCVD設備實現(xiàn)量產(chǎn)[N];廣東科技報;2013年
4 中國科學院半導體研究所 劉祥林 焦春美;國產(chǎn)MOCVD設備開發(fā)勢在必行[N];中國電子報;2004年
5 王適春 哲一;依靠自主創(chuàng)新發(fā)展LED產(chǎn)業(yè)[N];中國電子報;2010年
6 記者 孫燕飚;中國LED投入期 海外設備廠商“好時光”[N];第一財經(jīng)日報;2010年
7 本報記者 趙晨;國產(chǎn)MOCVD設備還有機會嗎?[N];中國電子報;2013年
8 中科院蘇州納米所研究員 光達光電設備科技有限公司創(chuàng)始人 CTO 梁秉文;MOCVD未來十年必將大有作為[N];中國電子報;2013年
9 記者 劉肖勇 通訊員 吳晶平;發(fā)展LED產(chǎn)業(yè)需破解MOCVD技術(shù)[N];廣東科技報;2013年
10 通訊員 龔靜 記者 戴麗昕;大型國產(chǎn)MOCVD設備成功發(fā)運[N];上?萍紙;2012年
相關(guān)博士學位論文 前10條
1 林志宇;基于MOCVD方法的N面GaN材料生長及特性研究[D];西安電子科技大學;2015年
2 顧然;高質(zhì)量ZnO薄膜的MOCVD外延生長與原位摻雜[D];南京大學;2016年
3 朱光耀;ZnO MOCVD的生長模擬與優(yōu)化[D];南京大學;2011年
4 李暉;MOCVD生長GaN的輸運—反應模型研究[D];江蘇大學;2012年
5 楊天鵬;ZnO薄膜的等離子體輔助MOCVD生長及摻雜研究[D];吉林大學;2009年
6 李述體;III-Ⅴ族氮化物及其高亮度藍光LED外延片的MOCVD生長和性質(zhì)研究[D];南昌大學;2002年
7 趙旺;MOCVD法制備氧化鋅發(fā)光器件及薄膜晶體管的研究[D];吉林大學;2011年
8 鐘樹泉;MOCVD設備工藝優(yōu)化理論與低溫InP/Si晶片鍵合機理的研究[D];北京郵電大學;2010年
9 孫玉芹;用于固態(tài)照明的非極性a面GaN薄膜的MOCVD生長及表征[D];華中科技大學;2011年
10 楊小天;MOCVD法ZnO薄膜生長及其紫外探測器的制備與初步研究[D];吉林大學;2004年
相關(guān)碩士學位論文 前10條
1 王晟;MOCVD設備氣體輸運與加熱控制系統(tǒng)設計[D];華中科技大學;2008年
2 李偉;MOCVD的在線膜厚監(jiān)測系統(tǒng)的設計與實現(xiàn)[D];武漢理工大學;2012年
3 魯二峰;MOCVD溫度監(jiān)測與均勻性研究[D];浙江大學;2014年
4 郭仕寬;SiC襯底GaN基材料MOCVD生長及HEMT器件研制[D];蘭州大學;2015年
5 劉興宇;MOCVD反應室感應加熱裝置的研究[D];南昌大學;2015年
6 全曉彤;MOCVD法制備氧化鋁薄膜及其阻變特性[D];大連理工大學;2015年
7 呂偉華;MOCVD氣體混合系統(tǒng)的泄漏檢測研究[D];西安電子科技大學;2015年
8 牛瑞;PMOCVD的計算流體動力學研究[D];西安電子科技大學;2014年
9 楊源;MOCVD生長氮化鎵的KMC微觀模擬[D];西安電子科技大學;2014年
10 王寧;MOCVD法制備BZO-TCO的工藝與性能及其在太陽電池中的應用研究[D];河北工業(yè)大學;2015年
,本文編號:2144832
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2144832.html