新型低驅(qū)動電壓硅基光調(diào)制器的研究
[Abstract]:Silicon based platform is not only widely used in the field of traditional semiconductor electronics, but also widely used in micro nano photonic system. Silicon based platform has become an ideal platform for realizing micronanoscale integrated chips. Optical communication module in optoelectronic integrated chips can improve communication speed between chips and reduce communication power. Silicon based optical communication module It also brings new challenges to traditional semiconductor design and production. Therefore, silicon based optical communication module has great research and practical value. As an indispensable link in optical communication module, light modulator has always been the focus of this field. More and more attention has been paid to the sub integrated chips. The research of this paper includes two new schemes for the realization of low drive voltage light modulator on the silicon based platform. The first innovation is to use the hybrid integration technology to direct the direct bandgap III - V multi quantum well materials directly to the silicon based optical waveguides, and use the multi quantum well material of III - v. On this silicon based hybrid platform, three tapered coupling structures are creatively designed to suppress the excitation of high order modes in the III - V waveguide and shorten the coupling length between pure silicon and hybrid integrated III - V waveguides. The length of the coupling structure is only 8 m. We can realize the coupling of more than 95% energy. By virtue of this design idea, this paper makes and tests the silicon based hybrid integrated III - V electric absorption light modulator. Using the characteristics of high selective corrosion ratio of III - V material, we find out the process of making the 3 - V waveguide by the full wet method, simplifying the production process of the traditional III - V waveguide. A low drive voltage electro absorption light modulator based on the band filling effect is presented. The modulator has a length of 80 mu m, a driving voltage value of only 50 mV, a dynamic extinction of 6.3 dB, a dynamic energy consumption of only 0.29 fJ/bit, and a modulation rate of 1.25 Gbps. at the same time. This is one of the lowest driving voltages in the present report. The effect of the electro absorption light modulator provides a new idea for realizing low drive voltage, low power, small size light modulator. We have tested its performance as a photodetector with the aid of the dual working state of the electro absorption light modulator at the reverse bias voltage. We verify that the electric absorption light modulator can also be used as a high-speed light. The detector has a response degree of 0.86 A/W under the bias voltage of -3 V, and its detection speed can reach 20 Gbps.. We first display the optical transceiver module of the integrated cascaded two array waveguide gratings, 6 high speed light modulators, and 6 high-speed optical detectors. With the aid of the band filling effect, We overcome the high insertion loss of the cascaded arrayed waveguide grating. When the transmission rate of a single channel is 1.5 Gbps, we observed a clear open eye picture at the photodetector end. Second innovative schemes, which are sensitive to internal reflection using low loss Microrings, are designed. A new type of pure silicon based light modulator based on adjustable reflector and microring structure. This silicon based tunable mirror micro ring light modulator has greater optical bandwidth than a micro ring light modulator, and a compact structure of the Maher Zeng Del light modulator. The theoretical prediction of the phase modulation region of the optical modulator we designed is 200 mu. The driving voltage is only 0.5 V, and the extinction ratio of 8 dB can be realized. Then, we first analyze the influence of the photon lifetime in the microloop on the modulation bandwidth when the inner reflectivity of the microloop is modulated.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN761
【相似文獻】
相關(guān)期刊論文 前10條
1 陳燕;張世林;張彬;毛陸虹;郭維廉;;光調(diào)制器綜述[J];半導(dǎo)體技術(shù);2008年04期
2 汪冰;黃平;楊磊;;高速光調(diào)制器的發(fā)展與封裝技術(shù)研究[J];電子與封裝;2013年07期
3 戎瑞;;聚焦光調(diào)制器[J];激光與紅外;1974年11期
4 楊根元;須重明;;微波光調(diào)制器[J];復(fù)旦學(xué)報(自然科學(xué)版);1979年02期
5 蘇錫安;光調(diào)制器市場的發(fā)展[J];光機電信息;2001年08期
6 李傳起,孫小菡,張明德,丁東;高速光調(diào)制器的技術(shù)突破[J];光電子技術(shù)與信息;2002年06期
7 茅惠兵,忻佩勝,賴宗聲;微機械光調(diào)制器激勵機制的理論和實驗研究[J];半導(dǎo)體光電;2003年03期
8 楊雄,向紹華,宋克慧;利用聲-光調(diào)制器傳送光子的頻率糾纏態(tài)(英文)[J];光電子·激光;2003年06期
9 楊擁軍;陳福深;鄭俊;;脊型超寬帶行波光調(diào)制器的建模與設(shè)計[J];電子科技大學(xué)學(xué)報;2005年S1期
10 楊擁軍;陳福深;孫豹;;脊型超寬帶行波光調(diào)制器微波特性分析[J];半導(dǎo)體光電;2006年05期
相關(guān)會議論文 前9條
1 顏強;黃永清;段曉峰;王偉;顏鑫;任曉敏;黃輝;王琦;張霞;;高性能光調(diào)制器性能測試研究[A];中國光學(xué)學(xué)會2010年光學(xué)大會論文集[C];2010年
2 楊建義;江曉清;李錫華;周強;王明華;王躍林;;基于接觸式極化法的電光聚合物光調(diào)制器研究[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會2004年學(xué)術(shù)大會論文集[C];2004年
3 張潔;黃尚廉;閆許;張智海;伍藝;;光柵平動式光調(diào)制器的光學(xué)特性分析和仿真[A];中國微米、納米技術(shù)第七屆學(xué)術(shù)會年會論文集(一)[C];2005年
4 胡章芳;;高速鈮酸鋰馬赫-曾得光調(diào)制器的特性研究[A];2007系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2007年
5 伍藝;黃尚廉;張潔;張智海;;反射面平動式光柵光調(diào)制器的實現(xiàn)及機電特性分析[A];中國微米、納米技術(shù)第七屆學(xué)術(shù)會年會論文集(二)[C];2005年
6 閆許;黃尚廉;張潔;張智海;陳偉民;;閃耀式光柵光調(diào)制器及其機電耦合分析與仿真[A];中國微米、納米技術(shù)第七屆學(xué)術(shù)會年會論文集(一)[C];2005年
7 閆許;黃尚廉;張潔;付紅橋;;基于MOEMS光柵平動式光柵光調(diào)制器[A];光電技術(shù)與系統(tǒng)文選——中國光學(xué)學(xué)會光電技術(shù)專業(yè)委員會成立二十周年暨第十一屆全國光電技術(shù)與系統(tǒng)學(xué)術(shù)會議論文集[C];2005年
8 王明華;周劍英;李錫華;周小平;江曉清;;InP基量子阱電吸收光調(diào)制器的設(shè)計與工藝實驗[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會2004年學(xué)術(shù)大會論文集[C];2004年
9 焦磊;李立娟;崔海林;何敬鎖;;基于MZM光調(diào)制器的0.12THz光載太赫茲波產(chǎn)生方法研究[A];第十屆全國光電技術(shù)學(xué)術(shù)交流會論文集[C];2012年
相關(guān)博士學(xué)位論文 前10條
1 黃強盛;新型低驅(qū)動電壓硅基光調(diào)制器的研究[D];浙江大學(xué);2016年
2 周劍英;InP基量子阱電吸收行波光調(diào)制器的研制[D];浙江大學(xué);2005年
3 孫吉勇;MEMS光柵光調(diào)制器陣列及投影顯示系統(tǒng)的光學(xué)分析和實驗[D];重慶大學(xué);2008年
4 于弋川;高速半導(dǎo)體電吸收光調(diào)制器與MSM光探測器研究[D];浙江大學(xué);2007年
5 王帆;硅基的環(huán)形諧振腔光調(diào)制器和光開關(guān)的研究[D];浙江大學(xué);2009年
6 張智海;基于MOEMS技術(shù)的光柵平動式光調(diào)制器陣列若干關(guān)鍵技術(shù)研究[D];重慶大學(xué);2008年
7 張潔;面向顯示基于MEMS光柵光調(diào)制器光學(xué)分析和實驗[D];重慶大學(xué);2006年
8 唐涌波;硅基波導(dǎo)光柵耦合器與高速電吸收光調(diào)制器的研究[D];浙江大學(xué);2010年
9 史玲娜;基于LED照明的MEMS光柵光調(diào)制器的光學(xué)投影系統(tǒng)分析與設(shè)計[D];重慶大學(xué);2009年
10 黃構(gòu);超高速、射頻與微波單片集成電路設(shè)計關(guān)鍵技術(shù)研究[D];東南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 唐琳峰;石墨烯光調(diào)制器基礎(chǔ)研究[D];電子科技大學(xué);2014年
2 魏海潮;彈光調(diào)制器及其高壓驅(qū)動技術(shù)研究[D];中北大學(xué);2013年
3 韓磊;光柵平動式光調(diào)制器機電特性與測試系統(tǒng)研究[D];重慶大學(xué);2007年
4 賈國棟;基于雙芯光纖的高性能全光纖光調(diào)制器的研究[D];北京交通大學(xué);2014年
5 顧佳佳;液晶光調(diào)制器實現(xiàn)光波移相的實驗研究[D];遼寧師范大學(xué);2013年
6 王林;光調(diào)制器驅(qū)動器低頻噪聲測試及其應(yīng)用研究[D];西安電子科技大學(xué);2012年
7 胡_拊,
本文編號:2164591
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/xxkjbs/2164591.html