PKCζ與Ⅱa型組蛋白去乙酰化酶相互作用調(diào)節(jié)前列腺癌細胞Warburg效應及其機制
[Abstract]:1. Background Metabolism is one of the most important characteristics of cancer, which is closely related to the occurrence and development of tumor. Tumor cells absorb glucose to produce energy through glycolysis pathway in both aerobic and anaerobic conditions to meet the needs of rapid growth. The Warburg effect is not only limited to changes in glycolysis and tricarboxylic acid cycles, but also to metabolic reprogramming of fatty acids, glutamine, serine, and mono-carboxylic units in tumor cells. Therefore, further study on the mechanism of Warburg effect and its relationship with tumor development will not only help to reveal the intrinsic relationship between tumor metabolic changes and tumor progression, but also seek highly specific metabolic markers for clinical diagnosis and targeted treatment of tumor metabolism. New therapeutic strategies offer new insights and opportunities. The aerobic glycolysis (Warburg effect) shown by tumor cells weakens the oxidative phosphorylation (OXPHOS) pathway in mitochondria, while the metabolic pathways such as aerobic glycolysis and pentose phosphate pathway (PPP) to form nucleotides increase. Strong. This abnormal glycometabolic transformation promotes the selective growth of tumor cells. It not only provides energy (ATP), biological macromolecular precursors (amino acids, nucleotides, etc.) and coenzymes (Nicotinamide adenine dinucleotide phosphate NADPH) for rapidly proliferating tumor cells, but also forms tumor cells through Warburg effect. Acidified microenvironment is conducive to the growth, invasion and metastasis of tumor cells. In addition, the metabolic transformation of tumor cells from mitochondrial oxidative phosphorylation to glycolysis reduces the production of reactive oxygen species (ROS) and thus reduces the toxicity of ROS to tumor cells. Proliferation, apoptosis resistance, unlimited replication potential, insensitivity to growth signals, persistent angiogenesis, tissue invasion and metastasis, and immune surveillance and escape constitute the eight new characteristic markers of tumor. Acquired deletion or mutation, loss of tumor suppressor genes, changes in the activity or expression of key enzymes in the glycolysis pathway in tumor cells, loss of respiratory chain function or decreased oxidative phosphorylation due to mitochondrial mtDNA mutation, high expression of hypoxia-inducible factors in tumor cells, activation of downstream multiple tumors, and adaptation to hypoxia microenvironment Although Warburg effect is one of the most important characteristics of tumors, tumor cells adapt to the Warburg effect of hypoxic microenvironment by mutation of these genes and activation of key signaling pathways. The role of other regulatory molecules and key signaling pathways closely related to tumorigenesis and progression in the regulation of the Warburg effect is still unclear. PKC belongs to a family of serine/threonine proteins activated by Receptor Tyrosine kinase (RTK) and G-protein coupled receptor (GPCR). Kinases, including three subgroups, namely Ca2+ and DAG-dependent typical PKC (PKC-a, -beta, -gamma); DAG-dependent but Ca2+ independent PKC (PKC-delta, -e, -_, -theta); DAG and Ca2+ independent atypical PKC (PKC-_, -_). PKC family plays an important role in cell growth and metabolism, mitosis and proliferation, cytoskeleton protein remodeling. One of the atypical subtypes plays an important role in integrating extracellular signal stimuli and regulating key signaling pathways related to cell growth, metabolism and cell polarity. Programming. Previous studies have shown that epigenetic changes regulated by histone deacetylases (HDACs) play an important role in tumor proliferation, migration, genome stability, angiogenesis and tumor apoptosis. They are mainly composed of Class I, Class II and Class III HDACs. Recently, HDACs have been involved in tumor metabolism. However, it is still unclear whether Class II HDACs, which are closely related to tumor proliferation and progression, are involved in the regulation of tumor metabolism, especially glucose metabolism. This study not only helps to understand the role and molecular mechanism of PKC_and Class II a HDACs in the growth of prostate cancer, but also lays a foundation for further discovery of new targets for regulating tumor metabolism. 3. Research methods This study mainly through overexpression (plasmid) or interference. (si RNA) strategy to investigate the role of PKC_or II a HDACs in regulating the expression of intermediate and end products of aerobic glycolysis pathway and their molecular mechanisms in prostate cancer cells; the co-location and interaction of PKC_and II a HDACs in the nucleus were confirmed by immunofluorescence staining and immunoprecipitation PKC promotes the growth of prostate cancer cell DU145 and Warburg effect. Overexpression of PKC promotes the growth of prostate cancer cell DU145 and glucose uptake and lactic acid secretion. On the contrary, it knocks down prostate cancer cells. The expression of PKC_significantly decreased the growth, glucose uptake and lactic acid secretion of prostate cancer DU145 cells. 2. PKC_promoted the expression of Warburg effect-related proteins in prostate cancer cells. Real-time quantitative RT-PCR and Western blot analysis showed that the over-expression of PKC_promoted the glycolysis of prostate cancer DU145 cells. The expression of related proteins, glucose and lactate transporters (HK II, PFKP, MCT4, CD 147) was significantly decreased by knocking down the expression of endogenous PKC_in prostate cancer DU145 cells, while the expression of glucose and lactate transporters (HK II, PFKP, MCT4, CD 147) was significantly decreased by knocking down the expression of endogenous PKC_. Overexpression of type II a HDACs (HDAC4,5,7) reduces the growth, glucose uptake and lactic acid secretion of prostate cancer DU145 cells. Studies have shown that there is a feedback loop between HDACs and cell metabolism. The effects of type II a HDACs (HDAC4,5,7) on the growth and glycolysis of tumor cells were studied. HA-HDAC4,5,7 was transfected into prostate cancer DU145 cells. The results showed that overexpression of HA-HDAC4,5,7 significantly decreased the growth and survival of DU145 cells. In addition, lactate transporter inhibitor a-CHCA was added to knock down endogenous HDAC7 expression DU145 cells to antagonize the growth-promoting effect of endogenous HDAC7 knockdown. Finally, we further examined the effects of type II a HDACs on glucose uptake and lactate secretion. Expression of HA-HDAC4,5,7 in prostate cancer cells DU145 and PC-3M decreased glucose uptake and lactic acid secretion in a time-dependent manner, suggesting that type II a HDACs may inhibit tumor cell growth by negatively regulating glycolysis. 4. Overexpression of type II a HDACs decreased the expression of Warburg effect-related proteins in prostate cancer DU145 cells. L-time quantitative RT-PCR showed that the overexpression of HA-HDAC4,5,7 in prostate cancer DU145 cells significantly decreased the expression of glycolysis-related proteins, glucose and lactate transporters (HKII, PFKP, MCT4, CD 147) in prostate cancer DU145 cells, and Western blot showed that the overexpression of HA-HDAC4,5,7 in addition to significantly reducing the above-mentioned glycolysis-related proteins. PKC_and II a HDACs were co-localized in the nucleus and interacted with each other, and knocking down the expression of PKC_could significantly reduce the phosphorylation level of the nucleus key sites of HDAC. Immunofluorescence staining showed that endogenous PKC_could be associated with type II a HDACs. HDAC4,5,7 were co-localized in the nucleus. Immunocoprecipitation further showed that HDAC4,5,7 could interact directly with PKC. In addition, knocking down the expression of PKC could significantly reduce the phosphorylation level of the key sites of HDAC exocytosis. Inhibitory effect of HDAC7 on the expression of glycolysis-related genes.6.HDAC7 could antagonize the growth-promoting effect of PKC_on DU145 cells.The results showed that knocking down the expression of endogenous PKC_significantly inhibited the growth of DU145 cells, while knocking down the expression of HDAC7 significantly promoted the growth of DU145 cells. Tapping down the expression of endogenous HDAC7 may antagonize the inhibition of endogenous PKC_on the growth of DU145 cells. 5. Conclusion PKC_can regulate the expression of Warburg-related genes and the secretion of lactic acid in prostate cancer cells by interacting with type II a HDACs. This study will promote the growth of tumor cells. It lays a foundation for further study of the relationship between the changes of glucose metabolism and the growth and progression of prostate cancer, and provides a new potential target for the diagnosis and treatment of prostate cancer.
【學位授予單位】:南方醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:R737.25
【相似文獻】
相關(guān)期刊論文 前10條
1 黃馬羊;宋濤;黎曉;;3'-大豆苷元磺酸鈉對前列腺癌細胞的影響[J];贛南醫(yī)學院學報;2010年03期
2 歐陽斌;張元原;;科學家鑒定出前列腺癌細胞的來源[J];中華男科學雜志;2010年10期
3 衛(wèi)華;;前列腺癌細胞收集的改進[J];中國醫(yī)療器械信息;2011年12期
4 麥鳳鳴,梁若斯,胡建波;前列腺癌細胞凋亡相關(guān)基因表達及其意義[J];廣州醫(yī)學院學報;2002年02期
5 張星海,楊賢強;茶多酚及兒茶素對前列腺癌細胞生長的抑制作用[J];茶葉;2003年03期
6 王共先,劉偉鵬,汪泱,傅斌,黃學明,陳慶科,袁鏗,胡銀英;前列腺癌細胞的原代和傳代培養(yǎng)的研究[J];江西醫(yī)學檢驗;2004年01期
7 龍智,蔣先鎮(zhèn);外源性一氧化氮對前列腺癌細胞作用的研究[J];中國男科學雜志;2005年02期
8 田媛,秦璽,胡寶成,黃翠芬;抗前列腺癌細胞特異抗體庫的構(gòu)建及特異結(jié)合抗體的篩選[J];中國腫瘤生物治療雜志;2005年01期
9 張巖,劉賢錫,張冰,胡海燕,龔磊;鳥氨酸脫羧酶基因反義RNA對前列腺癌細胞生長的抑制作用[J];中國生物化學與分子生物學報;2005年01期
10 李璐;;藥用菌靈芝可切斷前列腺癌細胞的血液供應[J];國外醫(yī)學.藥學分冊;2006年03期
相關(guān)會議論文 前10條
1 陸斌;趙善超;鄧鵬;姜勇;;晚期糖基化終末產(chǎn)物受體存在異常定位并能促進前列腺癌細胞的增殖[A];中國病理生理學會受體、腫瘤和免疫專業(yè)委員會聯(lián)合學術(shù)會議論文匯編[C];2010年
2 趙善超;賈立永;鄭少斌;毛向明;杜躍軍;;晚期糖基化終產(chǎn)物受體在前列腺癌細胞中的表達[A];第十五屆全國泌尿外科學術(shù)會議論文集[C];2008年
3 杜俊華;姜昊文;關(guān)明;丁強;;基因芯片篩查前列腺癌細胞系抗甲基化干預后的目標基因[A];第十六屆全國泌尿外科學術(shù)會議論文集[C];2009年
4 呂家駒;高德軒;夏慶華;張輝;;丙戊酸對前列腺癌細胞裸鼠移植瘤生長抑制的實驗研究[A];2007年華東六省一市泌尿外科學術(shù)會議暨山東省泌尿外科年會論文匯編[C];2007年
5 黃海;杜濤;黃健;許可慰;尹心寶;林天歆;江春;韓金利;郭正輝;;高效抑制核因子κ-B的莖環(huán)RNA基因序列的獲得[A];第十五屆全國泌尿外科學術(shù)會議論文集[C];2008年
6 鄧勇;張煒飛;張成斌;林金明;;液相色譜串聯(lián)質(zhì)譜法定量檢測前列腺癌細胞肌氨酸代謝[A];中國化學會第29屆學術(shù)年會摘要集——第38分會:質(zhì)譜分析[C];2014年
7 解杰;陳安民;郭風勁;王建超;廖暉;柳昊;;前列腺癌細胞體外骨轉(zhuǎn)移立體模型的構(gòu)建[A];中華醫(yī)學會疼痛學分會第八屆年會暨CASP成立二十周年論文集[C];2009年
8 趙福軍;夏術(shù)階;;脂質(zhì)體介導靶向pPSMApromoter/enhancer-UPRT/5-FU自殺基因系統(tǒng)對前列腺癌細胞的作用研究[A];2007年華東六省一市泌尿外科學術(shù)會議暨山東省泌尿外科年會論文匯編[C];2007年
9 沈默;陶志華;周平;王彩虹;陳俐麗;;免疫磁珠法檢測外周血微轉(zhuǎn)移前列腺癌細胞的方法學探討[A];2007年浙江省醫(yī)學檢驗學學術(shù)年會論文匯編[C];2007年
10 宮麗華;方偉崗;;人前列腺癌細胞表達的P2Y嘌呤受體亞型特性及功能研究[A];第四屆中國腫瘤學術(shù)大會暨第五屆海峽兩岸腫瘤學術(shù)會議論文集[C];2006年
相關(guān)重要報紙文章 前2條
1 田香;辣椒素能殺前列腺癌細胞[N];衛(wèi)生與生活報;2007年
2 ;新方法可搜出隱藏的前列腺癌細胞[N];新華每日電訊;2006年
相關(guān)博士學位論文 前10條
1 田聆;前列腺癌細胞中的PTEN的多重miRNA調(diào)控研究[D];復旦大學;2012年
2 劉永青;自噬在天然小分子化合物促進前列腺癌細胞死亡中的作用及其機制研究[D];山東大學;2015年
3 溫冬華;前列腺癌細胞SUMO化蛋白的發(fā)現(xiàn)和功能研究[D];上海交通大學;2014年
4 陳勇;轉(zhuǎn)錄因子RUNX3對前列腺癌細胞惡性表型的影響[D];第四軍醫(yī)大學;2015年
5 溫明新;UBE2T促進前列腺癌細胞上皮間質(zhì)轉(zhuǎn)化及侵襲轉(zhuǎn)移的作用機制研究[D];山東大學;2015年
6 李濤;BDNF/TrkB通路對前列腺癌細胞上皮向間質(zhì)轉(zhuǎn)化、遷移、侵襲、失巢凋亡的影響及分子機制的體外研究[D];華中科技大學;2015年
7 楊俊;糖原合酶激酶3β調(diào)控前列腺癌細胞死亡的機制研究[D];華中科技大學;2010年
8 龐博;前列腺癌細胞系分泌蛋白質(zhì)組比較及相關(guān)蛋白功能研究[D];中國人民解放軍軍事醫(yī)學科學院;2008年
9 郭瓊;miR-375及MTDH在前列腺癌細胞中的功能研究[D];中南大學;2013年
10 蔣漢明;以蛋白酶體為靶點的地錢素M誘導前列腺癌細胞死亡的機制研究[D];山東大學;2013年
相關(guān)碩士學位論文 前10條
1 劉瑩;~(131)Ⅰ標記新型靶向FGF8分子探針的制備及其對前列腺癌細胞體外作用影響的實驗研究[D];寧夏醫(yī)科大學;2015年
2 翟紅運;胚胎干細胞分泌因子對前列腺癌細胞作用的研究[D];山東大學;2015年
3 梅_g;miR-27a對前列腺癌細胞遷移和侵襲的影響[D];哈爾濱工業(yè)大學;2015年
4 雷詠;二甲雙胍抑制前列腺癌細胞的遷移和侵襲并增加對紫杉醇敏感性的研究[D];廣西醫(yī)科大學;2015年
5 張燾;MiR-101調(diào)控前列腺癌細胞CRMP4的表達及其機制的初步研究[D];南昌大學醫(yī)學院;2015年
6 唐乃玲;冷凍消融對前列腺癌細胞轉(zhuǎn)化生長因子-β及smad通路影響的實驗研究[D];天津醫(yī)科大學;2015年
7 李婷婷;SP-1/3在前列腺癌細胞DU145和LNCaP中的表達水平及對PP2A-Aα的調(diào)控作用[D];湖南師范大學;2015年
8 易明;AP-2α和Ets-1在前列腺癌細胞DU145和LNCaP中的表達水平及對PP2A-Aα的調(diào)控作用[D];湖南師范大學;2015年
9 皮亞洲;RKIP的克隆、表達及其影響腫瘤細胞遷移和細胞凋亡檢測性質(zhì)初步研究[D];南京大學;2013年
10 李松玉;PKCζ與Ⅱa型組蛋白去乙;赶嗷プ饔谜{(diào)節(jié)前列腺癌細胞Warburg效應及其機制[D];南方醫(yī)科大學;2014年
,本文編號:2230557
本文鏈接:http://www.wukwdryxk.cn/yixuelunwen/mjlw/2230557.html