粘彈阻尼板減振動力學(xué)特性及其漸進(jìn)拓?fù)鋬?yōu)化
發(fā)布時間:2018-01-16 21:10
本文關(guān)鍵詞:粘彈阻尼板減振動力學(xué)特性及其漸進(jìn)拓?fù)鋬?yōu)化 出處:《南昌航空大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 阻尼板 減振特性 漸進(jìn)法 動力學(xué)優(yōu)化
【摘要】:粘彈性阻尼材料的高阻尼特性,使其能夠高效耗損結(jié)構(gòu)能量,常敷設(shè)于各類板件表面用以減小結(jié)構(gòu)振動。然而,在諸如飛行器設(shè)計領(lǐng)域,由于對結(jié)構(gòu)本身重量和動力學(xué)特性的嚴(yán)格要求,全面敷設(shè)粘彈性阻尼材料有悖于結(jié)構(gòu)輕量化設(shè)計要求,需嚴(yán)格限制粘彈材料的用量。有鑒于此,本文著力于粘彈阻尼板結(jié)構(gòu)的減振動力學(xué)優(yōu)化研究,使結(jié)構(gòu)輕量化的同時減振效果好。主要完成的工作如下:(1)從結(jié)構(gòu)阻尼減振和結(jié)構(gòu)優(yōu)化設(shè)計的背景出發(fā),闡述了粘彈阻尼減振結(jié)構(gòu)動力學(xué)優(yōu)化的研究意義,收集歸納了結(jié)構(gòu)拓?fù)鋬?yōu)化各類方法及其優(yōu)缺點(diǎn),并總結(jié)分析了拓?fù)鋬?yōu)化在實(shí)際工程結(jié)構(gòu)中的應(yīng)用。(2)推導(dǎo)出粘彈板結(jié)構(gòu)動力學(xué)有限元計算模型,研究了粘彈阻尼減振結(jié)構(gòu)動力學(xué)拓?fù)鋬?yōu)化理論。基于能量法,對粘彈結(jié)構(gòu)進(jìn)行了動力學(xué)建模并采用有限元法對其求解;在動力學(xué)優(yōu)化理論的基礎(chǔ)上,詳細(xì)介紹了漸進(jìn)結(jié)構(gòu)拓?fù)鋬?yōu)化方法。(3)初步探明了粘彈阻尼結(jié)構(gòu)材料參數(shù)及結(jié)構(gòu)參數(shù)對結(jié)構(gòu)減振效果的影響,對粘彈結(jié)構(gòu)的減振動力學(xué)特性進(jìn)行了系統(tǒng)分析與優(yōu)化;趹(yīng)變能理論,運(yùn)用數(shù)值模擬方法,在對粘彈阻尼懸臂板結(jié)構(gòu)振動特性研究的基礎(chǔ)上,表征了粘彈性阻尼材料彈性模量、損耗因子及約束層與阻尼層的厚度比對結(jié)構(gòu)減振特性的影響。研究表明:合理配置阻尼結(jié)構(gòu)參數(shù)可獲得理想的減振降噪效果。(4)提出了一種基于多模態(tài)復(fù)合阻尼比最大化的優(yōu)化方法,對基于多模態(tài)振動響應(yīng)復(fù)合的自由阻尼減振板結(jié)構(gòu)進(jìn)行了動力學(xué)拓?fù)鋬?yōu)化研究。構(gòu)建出以復(fù)合模態(tài)阻尼比最大為目標(biāo)、以粘彈材料用量及頻率變動最小為約束的優(yōu)化模型,采用漸進(jìn)法對該模型進(jìn)行求解;通過繞單元阻尼比敏度均化技術(shù)有效解決了拓?fù)鋬?yōu)化中的棋盤格問題;編程實(shí)現(xiàn)了任意四邊形阻尼板漸進(jìn)優(yōu)化算法,并據(jù)此進(jìn)行優(yōu)化仿真;推出阻尼比體積密度以評析拓?fù)鋬?yōu)化效能。結(jié)果表明,在阻尼板結(jié)構(gòu)設(shè)計時若實(shí)現(xiàn)其多模態(tài)阻尼比最大,則能使板獲得良好的減振效果。
[Abstract]:The high damping characteristics of viscoelastic damping materials enable them to efficiently consume structural energy and are often laid on the surface of various panels to reduce structural vibration. However, in the field of aircraft design, for example. Due to the strict requirements of the weight and dynamic characteristics of the structure itself, the comprehensive laying of viscoelastic damping materials is contrary to the structural lightweight design requirements, and the amount of viscoelastic materials should be strictly restricted. This paper focuses on the dynamic optimization of viscoelastic damping plate structure. The main work is as follows: 1) based on the background of structural damping and structural optimization design, the research significance of structural dynamic optimization with viscoelastic damping is expounded. The methods of structural topology optimization and their advantages and disadvantages are summarized, and the application of topology optimization in practical engineering structures is analyzed. The finite element model of viscoelastic plate structure dynamics is derived. The dynamic topology optimization theory of viscoelastic damping damping structure is studied. Based on the energy method, the dynamic model of viscoelastic structure is established and solved by finite element method. Based on the theory of dynamic optimization, the method of topology optimization of progressive structure is introduced in detail.) the influence of material parameters and structural parameters of viscoelastic damping structure on the damping effect of structure is preliminarily investigated. Based on the theory of strain energy and numerical simulation method, the vibration characteristics of viscoelastic damping cantilever plate structure are studied. The elastic modulus of viscoelastic damping materials was characterized. The effect of loss factor and thickness ratio of restraint layer to damping layer on vibration absorption characteristics of structure is studied. The results show that the optimal vibration and noise reduction effect can be obtained by reasonable configuration of damping structure parameters. An optimization method based on the maximization of multimodal composite damping ratio is proposed. The dynamic topology optimization of the free damping plate structure based on the multimodal vibration response composite is studied and the maximum damping ratio of the composite mode is constructed. The optimization model with minimum quantity and frequency change of viscoelastic material is solved by asymptotic method. The chessboard lattice problem in topology optimization is effectively solved by using the sensitivity homogenization technique of the damping ratio of the wound elements. The progressive optimization algorithm of any quadrilateral damping plate is realized by programming, and the optimization simulation is carried out according to the algorithm. The volume density of damping ratio is deduced to evaluate the effectiveness of topology optimization. The results show that the maximum multi-mode damping ratio of damping plate structure can make the plate obtain a good damping effect.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB535.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 張彩霞;沙云東;朱琳;揭曉博;;薄壁結(jié)構(gòu)約束阻尼板減振降噪優(yōu)化設(shè)計[J];沈陽航空航天大學(xué)學(xué)報;2014年03期
,本文編號:1434817
本文鏈接:http://www.wukwdryxk.cn/guanlilunwen/gongchengguanli/1434817.html
最近更新
教材專著