Galfenol復(fù)合懸臂梁磁機(jī)耦合建模及實(shí)驗(yàn)研究
本文選題:磁致伸縮 + Galfenol合金; 參考:《武漢理工大學(xué)》2015年博士論文
【摘要】:Galfenol合金是繼Terfenol-D、PZT等脆性材料之后開(kāi)發(fā)的一種具有磁致伸縮效應(yīng)的智能材料,它具有優(yōu)越的機(jī)械加工性能和良好的熱穩(wěn)定性,可在惡劣工況下進(jìn)行工作,有力地填補(bǔ)了傳統(tǒng)磁致伸縮材料與超磁致伸縮材料之間的空白,由其構(gòu)成的Galfenol復(fù)合懸臂梁是一種智能型器件,在橋梁結(jié)構(gòu)健康監(jiān)控、車(chē)輛主動(dòng)振動(dòng)控制、飛機(jī)機(jī)翼驅(qū)動(dòng)與控制等交通信息工程領(lǐng)域中具有重要的應(yīng)用前景。在磁致伸縮變形過(guò)程中,Galfenol合金具有非線性、磁滯性和耦合效應(yīng)等特征,而目前普遍采用的Jiles-Atherton模型、Preisach模型等方法對(duì)磁致伸縮材料進(jìn)行非線性建模,無(wú)法完整描述Galfenol合金的磁致伸縮機(jī)理;同時(shí)Galfenol和外磁場(chǎng),應(yīng)力場(chǎng)之間有復(fù)雜的非線性耦合關(guān)系,怎樣理解和表征這些耦合關(guān)系,是一個(gè)迫切急需解決的關(guān)鍵科學(xué)問(wèn)題。本文對(duì)此進(jìn)行了有益的嘗試,在深入分析Galfenol材料建模的基礎(chǔ)上,研究其耦合到懸臂梁中的關(guān)鍵建模方法,并制作樣機(jī)進(jìn)行實(shí)驗(yàn)驗(yàn)證,得到一些有益的結(jié)論。本文的主要研究貢獻(xiàn)如下:1、在Galfenol材料的本征建模過(guò)程中,利用材料的磁滯特性構(gòu)造其微觀磁化模型,在微觀模型的基礎(chǔ)上使用統(tǒng)計(jì)學(xué)理論建立其宏觀模型,并用數(shù)值求積公式求解宏觀模型的數(shù)值解,解決了內(nèi)核函數(shù)實(shí)現(xiàn)與積分離散化兩個(gè)關(guān)鍵性問(wèn)題,采用高斯-勒讓德對(duì)積分進(jìn)行求解,使用矩陣表示法實(shí)現(xiàn)內(nèi)核函數(shù),以保證模型的計(jì)算精度。2、在復(fù)合懸臂梁的優(yōu)化設(shè)計(jì)中,通過(guò)對(duì)Galfenol復(fù)合懸臂梁的密度函數(shù)求解體積積分獲得其內(nèi)能函數(shù),利用內(nèi)能最小原理將懸臂梁的撓度表示成厚度比和彈性模量的函數(shù),并對(duì)撓度進(jìn)行優(yōu)化設(shè)計(jì),仿真研究表明,當(dāng)厚度比較小時(shí),撓度隨基底厚度減少單調(diào)增加,當(dāng)撓度達(dá)最大值后,隨厚度比進(jìn)一步增加,撓度開(kāi)始減小,并將撓度和已有文獻(xiàn)的實(shí)驗(yàn)進(jìn)行對(duì)比研究。3、在復(fù)合懸臂梁的磁機(jī)耦合建模過(guò)程中,將Galfenol本征模型與懸臂梁模型進(jìn)行耦合,利用虛功原理在二維條件下建立復(fù)合懸臂梁的隱式非線性動(dòng)力學(xué)模型,提出一種非線性數(shù)值求解方法,將本文建立的復(fù)合懸臂梁動(dòng)力學(xué)模型與現(xiàn)有模型進(jìn)行對(duì)比研究,并通過(guò)實(shí)驗(yàn)進(jìn)行驗(yàn)證,結(jié)果顯示數(shù)值算法誤差小,可靠程度高。4、在Galfenol復(fù)合懸臂梁的實(shí)驗(yàn)過(guò)程中,采用疊片結(jié)構(gòu)的磁路設(shè)計(jì)以盡量抑制渦流損耗,利用有限元對(duì)樣機(jī)磁路進(jìn)行優(yōu)化設(shè)計(jì),外部磁場(chǎng)、彎曲負(fù)載及鈹青銅層厚度三個(gè)參數(shù)被辨識(shí),深入剖析復(fù)合懸臂梁的磁致伸縮機(jī)理,得出Galfenol合金在懸臂梁中受到拉伸和彎曲耦合作用的結(jié)論,可為進(jìn)一步挖掘該懸臂梁的應(yīng)用提供實(shí)驗(yàn)支持。本文采用理論建模、數(shù)字仿真與實(shí)驗(yàn)驗(yàn)證相結(jié)合的研究路線,取得研究?jī)?nèi)容與創(chuàng)新成果有效地解決了Galfenol合金的磁滯建模與復(fù)合懸臂梁的動(dòng)力學(xué)響應(yīng)等關(guān)鍵問(wèn)題,對(duì)交通信息工程及控制領(lǐng)域其他智能材料復(fù)合懸臂梁的非線性建模亦有借鑒意義。
[Abstract]:Galfenol alloy is a kind of intelligent material with magnetostrictive effect, which is developed after the brittle material such as Terfenol-Dy PZT. It has excellent machining performance and good thermal stability. The gap between the traditional magnetostrictive material and the giant magnetostrictive material is filled by force. The Galfenol composite cantilever is an intelligent device, which is used to monitor the health of the bridge structure and control the active vibration of the vehicle. Aircraft wing drive and control have important applications in traffic information engineering. In the process of magnetostrictive deformation, the Galfenol alloy has the characteristics of nonlinearity, hysteresis and coupling effect. However, the Jiles-Atherton model and Preisach model are widely used to model the magnetostrictive material. The magnetostrictive mechanism of Galfenol alloy can not be fully described, and there are complex nonlinear coupling relations between Galfenol and external magnetic field. How to understand and characterize these coupling relationships is a key scientific problem that needs to be solved urgently. Based on the deep analysis of Galfenol material modeling, the key modeling method coupled to cantilever beam is studied in this paper, and a prototype is made for experimental verification, and some useful conclusions are obtained. The main contributions of this paper are as follows: in the intrinsic modeling process of Galfenol material, the microscopic magnetization model is constructed by using the hysteresis characteristics of the material, and the macroscopic model is established by using the statistical theory on the basis of the microscopic model. The numerical solution of macroscopic model is solved by numerical quadrature formula, and two key problems of kernel function realization and integral discretization are solved. Gauss-Legendre is used to solve integral and matrix representation method is used to realize kernel function. In order to ensure the accuracy of the model, in the optimization design of the composite cantilever beam, the internal energy function of the composite cantilever beam is obtained by solving the volume integral of the density function of the Galfenol composite cantilever beam. The deflection of cantilever beam is expressed as a function of thickness ratio and elastic modulus by using the principle of minimum internal energy, and the deflection is optimized. The simulation results show that the deflection increases monotonously with the decrease of substrate thickness when the thickness is small. When the deflection reaches the maximum value, the deflection begins to decrease with the increase of the thickness ratio, and the deflection is compared with the experiments in previous literatures. 3. In the process of the magneto-mechanical coupling modeling of the composite cantilever beam, The Galfenol eigenmodel is coupled with the cantilever model, and the implicit nonlinear dynamic model of the composite cantilever is established by using the virtual work principle under two-dimensional conditions, and a nonlinear numerical solution method is proposed. The dynamic model of composite cantilever beam established in this paper is compared with the existing model and verified by experiments. The results show that the error of numerical algorithm is small and the reliability is high. 4. In the course of Galfenol composite cantilever beam experiment, The magnetic circuit of laminated structure is designed to suppress the eddy current loss as far as possible. The magnetic circuit of the prototype is optimized by finite element method. The external magnetic field, the bending load and the thickness of beryllium bronze layer are identified. The magnetostrictive mechanism of the composite cantilever beam is deeply analyzed and the conclusion that Galfenol alloy is subjected to the coupling of tension and bending in the cantilever beam is obtained which can provide experimental support for further excavation of the cantilever beam. In this paper, theoretical modeling, digital simulation and experimental verification are used to solve the key problems such as hysteresis modeling of Galfenol alloy and dynamic response of composite cantilever beam. It is also useful for nonlinear modeling of other intelligent materials composite cantilever beam in traffic information engineering and control field.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB381
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋召青;龍玉峰;孫俊平;;遲滯非線性系統(tǒng)的建模與控制研究綜述[J];海軍航空工程學(xué)院學(xué)報(bào);2014年06期
2 舒亮;朱翔鷗;吳桂初;陳定方;盧全國(guó);;Galfenol智能懸臂梁中的頻率相關(guān)性及其自適應(yīng)動(dòng)態(tài)控制[J];機(jī)械工程學(xué)報(bào);2012年13期
3 王觀軍;楊勇;劉晶姝;柳言國(guó);石仁委;;基于磁致伸縮效應(yīng)的超聲導(dǎo)波技術(shù)導(dǎo)管架腐蝕檢測(cè)試驗(yàn)[J];腐蝕與防護(hù);2011年08期
4 陳定方;盧全國(guó);梅杰;舒亮;劉坤;;Galfenol合金應(yīng)用研究進(jìn)展[J];中國(guó)機(jī)械工程;2011年11期
5 趙章榮;鄔義杰;顧新建;張雷;王彬;;用神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)實(shí)現(xiàn)超磁致伸縮智能構(gòu)件滑?刂芠J];光學(xué)精密工程;2009年04期
6 盧全國(guó);陳定方;鐘毓寧;陳敏;;超磁致伸縮致動(dòng)器熱變形影響及溫控研究[J];中國(guó)機(jī)械工程;2007年01期
7 李勇勝;張世榮;楊紅川;李擴(kuò)社;徐靜;于敦波;;Fe-Ga合金磁致伸縮材料的研究進(jìn)展[J];稀有金屬;2006年05期
8 韓志勇;馬芳;張茂才;周壽增;;Fe_(83)Ga_(17)合金熱處理過(guò)程中的磁致伸縮性能和結(jié)構(gòu)分析[J];北京科技大學(xué)學(xué)報(bào);2006年06期
9 郭世海,張羊換,王新林;磁性形狀記憶合金的研究現(xiàn)狀及發(fā)展[J];稀有金屬;2005年03期
10 萬(wàn)永平,方岱寧,黃克智;磁致伸縮材料的非線性本構(gòu)關(guān)系[J];力學(xué)學(xué)報(bào);2001年06期
相關(guān)博士學(xué)位論文 前4條
1 張成明;超磁致伸縮致動(dòng)器的電—磁—熱基礎(chǔ)理論研究與應(yīng)用[D];哈爾濱工業(yè)大學(xué);2013年
2 趙亞鵬;超磁致伸縮泵設(shè)計(jì)理論與實(shí)驗(yàn)研究[D];武漢理工大學(xué);2013年
3 唐剛;基于壓電厚膜的MEMS振動(dòng)能量采集器研究[D];上海交通大學(xué);2013年
4 周浩淼;鐵磁材料非線性磁彈性耦合理論及其在超磁致伸縮智能材料中的應(yīng)用[D];蘭州大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 常紅然;超磁致伸縮直線電機(jī)的結(jié)構(gòu)設(shè)計(jì)及特性分析[D];河北工業(yè)大學(xué);2012年
2 周敏;基于自由能模型的GMA磁機(jī)耦合特性研究[D];武漢理工大學(xué);2012年
3 劉坤;基于軸向非均勻磁場(chǎng)的GMA輸出特性研究[D];武漢理工大學(xué);2012年
4 潘鵬勝;基于超磁致伸縮的小型超精密尺蠖直線電機(jī)的設(shè)計(jì)及實(shí)現(xiàn)研究[D];上海交通大學(xué);2012年
5 江曉陽(yáng);基于GMM和柔性鉸鏈的大位移微致動(dòng)器設(shè)計(jì)與研究[D];武漢理工大學(xué);2011年
6 陳沛;基于超磁致伸縮致動(dòng)器的流量控制閥的設(shè)計(jì)與研究[D];武漢理工大學(xué);2011年
7 鄭慧;基于GMM驅(qū)動(dòng)位移自感知微進(jìn)給裝置設(shè)計(jì)及測(cè)試系統(tǒng)研究[D];武漢理工大學(xué);2010年
8 甄玉云;基于Prandtl-Ishlinskii模型的GMA精密定位研究[D];武漢理工大學(xué);2009年
9 陶孟侖;超磁致伸縮致動(dòng)器結(jié)構(gòu)設(shè)計(jì)與器件特性研究[D];武漢理工大學(xué);2008年
10 陳敏;基于FEA的超磁致伸縮微致動(dòng)器的熱分析及其溫控研究[D];武漢理工大學(xué);2008年
,本文編號(hào):2048390
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2048390.html