基于分級(jí)結(jié)構(gòu)鋁基LDHs復(fù)合材料的可控制備及其性能研究
發(fā)布時(shí)間:2018-06-22 05:08
本文選題:LDHs + 分級(jí)結(jié)構(gòu); 參考:《東南大學(xué)》2015年博士論文
【摘要】:結(jié)構(gòu)功能一體化的功能復(fù)合材料是目前材料物理與化學(xué)領(lǐng)域的一個(gè)重要研究方向。作為一種重要的功能材料,層狀雙金屬氫氧化物(LDHs)獨(dú)特的片狀結(jié)構(gòu)、可調(diào)的結(jié)構(gòu)與組分、良好的生物兼容性,使其在污染控制、化工分離、光電材料、生物材料和催化材料等領(lǐng)域得到廣泛的研究和應(yīng)用。目前,基于二維納米片多功能器件的設(shè)計(jì)、組裝和集成已成為研究者關(guān)注的焦點(diǎn),特別是功能石墨烯復(fù)合材料的發(fā)展,迫切需要我們從宏觀到微觀設(shè)計(jì)多功能LDHs基復(fù)合材料,并研究其相關(guān)性能。然而,由于LDHs特殊的二維結(jié)構(gòu),如何在微/納米尺度下實(shí)現(xiàn)對(duì)LDHs基復(fù)合材料的結(jié)構(gòu)控制和組分優(yōu)化,進(jìn)而實(shí)現(xiàn)對(duì)其物理和化學(xué)性能可控調(diào)變?nèi)允且粋(gè)極具挑戰(zhàn)性的工作。分級(jí)結(jié)構(gòu)的功能材料的可控合成已成為國(guó)內(nèi)外研究的熱點(diǎn),它對(duì)于光學(xué)、吸附、催化和分離等以界面現(xiàn)象為主的應(yīng)用有著重要的研究意義。這種材料在連續(xù)的微、納米尺度范圍下具有二重或者多重形態(tài)結(jié)構(gòu)并呈現(xiàn)多層次分布,其特有的結(jié)構(gòu)和形貌使其具有獨(dú)特的物理化學(xué)性能。分級(jí)結(jié)構(gòu)LDHs基復(fù)合材料由于具有納米尺度的二維片狀結(jié)構(gòu)單元和亞微米及以上尺度的整體形貌,以及不同結(jié)構(gòu)之間的協(xié)同和耦合效應(yīng),使其具有特殊表面性能。設(shè)計(jì)分級(jí)結(jié)構(gòu)LDHs基復(fù)合材料,可有效防止LDHs納米片在液相中團(tuán)聚問(wèn)題,改善LDHs粉體在生產(chǎn)和應(yīng)用時(shí)難分離和回收問(wèn)題,同時(shí),增強(qiáng)材料的機(jī)械性能。材料的結(jié)構(gòu)功能一體化體現(xiàn)了結(jié)構(gòu)與功能之間的耦合關(guān)系,說(shuō)明可以通過(guò)對(duì)材料微結(jié)構(gòu)的設(shè)計(jì)和優(yōu)化來(lái)調(diào)變材料的性能。本論文緊密跟蹤當(dāng)前層狀材料研究動(dòng)向,結(jié)合生物模板法和原位生長(zhǎng)技術(shù)設(shè)計(jì)生物形態(tài)分級(jí)結(jié)構(gòu)LDHs基復(fù)合材料,系統(tǒng)的研究了材料的制備工藝、化學(xué)組分、微結(jié)構(gòu)及其耦合效應(yīng)對(duì)材料性能的影響,并探討多相LDHs基復(fù)合材料組分-工藝-微結(jié)構(gòu)-性能之間的關(guān)系。主要研究工作和內(nèi)容如下:1.利用原位生長(zhǎng)技術(shù),在基體鋁片上定向生長(zhǎng)LDHs薄膜,并考察薄膜的紅外輻射性能。通過(guò)控制水熱溫度和時(shí)間獲得系列形貌和微結(jié)構(gòu)漸變的LDHs。根據(jù)薄膜材料的微結(jié)構(gòu)變化控制其紅外吸收和紅外反射,進(jìn)而控制LDHs薄膜的紅外輻射性能。由于所制備的LDHs薄膜具有可調(diào)的形貌和結(jié)構(gòu),擁有可控的紅外發(fā)射率性能,使其在低紅外發(fā)射率材料和熱控制方面都具有潛在的應(yīng)用價(jià)值。該研究不僅為設(shè)計(jì)分級(jí)結(jié)構(gòu)的LDHs基復(fù)合材料提了供理論基礎(chǔ),而且拓展了LDHs材料在吸波方面的應(yīng)用。2.以Zn-Al LDHs層板金屬為基礎(chǔ),設(shè)計(jì)分級(jí)結(jié)構(gòu)的ZnO和Al2O3纖維。為了獲得微/納分級(jí)結(jié)構(gòu)的ZnO,首先在脫脂棉纖維表面植入ZnO晶種,再采用硝酸鋅/六次亞甲基四胺體系在纖維表面原位生長(zhǎng)ZnO納米棒,從而制備微/納分級(jí)結(jié)構(gòu)的ZnO纖維。通過(guò)模板法,制備生物形態(tài)的Al2O3纖維,以Al2O3纖維為骨架,通過(guò)水熱反應(yīng),在其表面生長(zhǎng)一層AlOOH納米顆粒,再通過(guò)焙燒處理獲得分級(jí)結(jié)構(gòu)的Al2O3纖維。所提供的分級(jí)結(jié)構(gòu)氧化物纖維的制備方法具有工藝簡(jiǎn)單和成本低廉等特點(diǎn),所制備生物形態(tài)的功能氧化物在吸附、催化、光學(xué)和電子等領(lǐng)域有著潛在應(yīng)用價(jià)值。3.以Zn-Al LDHs層板金屬為基礎(chǔ),設(shè)計(jì)分級(jí)結(jié)構(gòu)的LDHs/ZnO復(fù)合材料。該方法基于在脫脂棉纖維表面原位生長(zhǎng)LDHs納米片;通過(guò)去除生物模板,使所制備的復(fù)合材料具有微/納分級(jí)結(jié)構(gòu)。該合成路線不僅能獲得生物形態(tài)的LDHs復(fù)合材料,同時(shí)能避開(kāi)傳統(tǒng)方法剝離LDHs存在的污染問(wèn)題。由于LDHs納米片與牛血清白蛋白(BSA)表面有機(jī)官能團(tuán)之間的靜電引力,以及復(fù)合材料獨(dú)特的表面結(jié)構(gòu),所制備的復(fù)合材料有著良好的BSA分離性能。4. 以Zn-Al LDHs層板金屬為基礎(chǔ),設(shè)計(jì)多組分ZnO/LDHs/Al2O3復(fù)合材料。以Al2O3纖維為基體和鋁源,硝酸鋅/六次亞甲基四胺為水熱體系,通過(guò)調(diào)變實(shí)驗(yàn)條件,控制LDHs晶體生長(zhǎng)和鋅鹽水解,制備生物形態(tài)ZnO/LDHs/Al2O3復(fù)合材料,并對(duì)復(fù)合材料的組分進(jìn)行優(yōu)化。以Mg-Al LDHs層板金屬為基礎(chǔ),硫酸鎂/尿素為水熱體系,通過(guò)控制LDHs納米晶生長(zhǎng)熱力學(xué)和動(dòng)力學(xué),對(duì)所制備的LDHs/Al2O3復(fù)合材料結(jié)構(gòu)進(jìn)行優(yōu)化。優(yōu)化后的復(fù)合材料具有獨(dú)特的微/納結(jié)構(gòu)、較高的比較面積和較大的孔容。與焙燒LDHs/ZnO復(fù)合材料相比,結(jié)構(gòu)優(yōu)化的LDHs/Al2O3復(fù)合材料的比表面積由42.32m2/g增加到292.51m2/g,優(yōu)化后的復(fù)合材料對(duì)BSA的吸附性能也進(jìn)一步增強(qiáng)。5.以Zn-Al LDHs層板金屬為基礎(chǔ),制備BSA/ZnO和BSA/LDHs雜化材料。利用靜電引力將Zn2+吸附到BSA表面,并在BSA表面發(fā)生水解,形成ZnO/BSA納米顆粒;在晶體驅(qū)動(dòng)力的作用下,ZnO/BSA納米顆粒進(jìn)一步自組裝成花狀結(jié)構(gòu)。所制備的BSA/LDHs雜化材料,不僅具有良好的生物兼容性,還具有良好的光學(xué)性能。利用BSA和金屬鋁離子之間的靜電引力,將BSA和與鋁溶膠組裝成BSA/鋁溶膠;采用原位生長(zhǎng)技術(shù),以BSA表面的鋁溶膠為鋁源,在其表面原位生長(zhǎng)LDHs,從而制備BSA/LDHs雜化材料。所制備的雜化材料在生物分離、催化、吸附、傳感和光學(xué)等領(lǐng)域有著潛在的應(yīng)用前景。總之,本論文致力于將生物結(jié)構(gòu)和生物功能引入到LDHs中,來(lái)改善LDHs基復(fù)合材料的表面性能和開(kāi)發(fā)多層次、多維度乃至結(jié)構(gòu)功能一體化的功能復(fù)合材料。通過(guò)本文研究,有助于揭示LDHs納米片與生物材料之間的界面作用和LDHs納米片原位生長(zhǎng)機(jī)理,為更深入地研究其它層狀材料的結(jié)構(gòu)設(shè)計(jì)和組裝提供了新的研究途徑。對(duì)于有效控制材料的結(jié)構(gòu)和形貌提供實(shí)驗(yàn)基礎(chǔ)和理論依據(jù),同時(shí)也推動(dòng)其他復(fù)合材料的發(fā)展,深化材料的應(yīng)用。
[Abstract]:Functional composite material with functional integration is an important research direction in the field of material physics and chemistry. As an important functional material, layered double metal hydroxide (LDHs) is unique flaky structure, adjustable structure and component, good biocompatibility, and makes it in pollution control, chemical separation, photoelectric materials, biology. The research and application of materials and catalytic materials have been widely studied. At present, the design, assembly and integration of multi-functional devices based on two-dimensional nanometers have become the focus of attention, especially the development of functional graphene composites. It is urgent for us to design multi-functional LDHs based composites from macro to microcosmic and to study their correlation. However, because of the special two-dimensional structure of LDHs, it is still a challenging task to realize the structure control and component optimization of LDHs based composites at the micro / nanoscale, and to realize the controllable modulation of physical and chemical properties. The controllable synthesis of functional materials of the hierarchical structure has become a hot spot at home and abroad. It has important research significance for the applications of optical, adsorption, catalysis and separation as the main interface phenomena. This material has two or multiple morphological structures and multilayered distribution under continuous micro and nanometer scale, and its unique structure and morphology make it have unique physical and chemical properties. The graded structure LDHs matrix complex The composite materials have special surface properties due to the nanoscale two-dimensional sheet structure units and the overall morphology of sub micrometers and above scales, as well as the synergistic and coupling effects between different structures. The design of LDHs based composite materials with hierarchical structure can effectively prevent the agglomeration of LDHs nanoscale in liquid phase, and improve the production of LDHs powder in the production. It is difficult to separate and recover the problem, at the same time, the mechanical properties of the material are enhanced. The integration of the structure and function of the material reflects the coupling relationship between the structure and the function. It shows that the material can be adjusted by the design and optimization of the material microstructure. This paper closely tracks the current research trend of the layered materials and combines the biological template. LDHs based composite materials were designed by method and in situ growth technology. The preparation process, chemical composition, microstructure and coupling effect on material properties were systematically studied. The relationship between the composition of multiphase LDHs based composites - Process Microstructures and properties was discussed. The main research work and content were as follows: 1. In situ growth technology was used to orientate the LDHs film on the matrix aluminum sheet, and the infrared radiation properties of the film were investigated. The infrared absorption and infrared reaction of the films were controlled by the microstructural changes of the LDHs. film materials by controlling the temperature and time of the hydrothermal process. The infrared radiation properties of the LDHs films were controlled. Due to the adjustable morphology and structure of the prepared LDHs films and the controllable infrared emissivity, it has potential application value in low infrared emissivity materials and heat control. This study not only provides a theoretical basis for the design of LDHs based composites with hierarchical structure, but also expands the absorption of LDHs materials in the wave absorption. Based on the Zn-Al LDHs laminates,.2. is used to design a hierarchical structure of ZnO and Al2O3 fibers. In order to obtain the ZnO of the micro / nanoscale structure, the ZnO crystal is first implanted on the surface of the skimmed cotton fiber, and then zinc nitrate / six methylene four amine system is used to grow ZnO nanoscale on the surface of the fiber on the surface of the fiber, thus the micro / nano structured ZnO fiber is prepared. By template method, the Al2O3 fiber of biological form is prepared, with Al2O3 fiber as the skeleton, a layer of AlOOH nanoparticles is grown on the surface by hydrothermal reaction, and then the graded structure of Al2O3 fiber is obtained by roasting. The preparation method of the graded structure oxide fiber has the characteristics of simple process and low cost. Functional oxides of substance form have potential application value in the fields of adsorption, catalysis, optics and electronics, which are based on the Zn-Al LDHs laminate metal as the basis for the design of a hierarchical structure of LDHs/ZnO composite. This method is based on the growth of LDHs nanoscale in situ on the surface of the skimmed cotton fiber; by removing the biological template, the composite materials are prepared by.3.. Micro / nanoscale structure. The synthetic route not only can obtain biological morphology of LDHs composite, but also avoid the traditional method of stripping the existing pollution problems of LDHs. The composite materials are prepared by the electrostatic attraction between LDHs nanoscale and bovine serum albumin (BSA) surface organic functional groups and the unique surface structure of the composite. Good BSA separation performance.4. is based on Zn-Al LDHs laminates to design multi component ZnO/LDHs/Al2O3 composites. Using Al2O3 fiber as the matrix and aluminum source, zinc nitrate / six methylene four amine as hydrothermal system, by adjusting the experimental conditions, controlling the growth of LDHs crystal and the hydrolysis of zinc salt, and preparing the bioform ZnO/LDHs/Al2O3 composite material. The composition of the composite is optimized. Based on Mg-Al LDHs laminates, Magnesium Sulfate / urea is a hydrothermal system. By controlling the thermodynamics and dynamics of LDHs nanocrystalline growth, the structure of the prepared LDHs/Al2O3 composite is optimized. The optimized composite has a unique micro / nano structure, a higher comparison area and a larger hole. Compared with the calcined LDHs/ZnO composite, the specific surface area of the structure optimized LDHs/Al2O3 composite is increased from 42.32m2/g to 292.51m2/g. The adsorption properties of the composite material to BSA are further enhanced by.5., based on Zn-Al LDHs laminates, BSA/ZnO and BSA/LDHs hybrid materials are prepared. Zn2+ adsorption to BSA by electrostatic force is used. On the surface, the surface of the BSA is hydrolyzed to form ZnO/BSA nanoparticles, and the ZnO/BSA nanoparticles are further self assembled into flower like structures under the action of crystal driving force. The prepared BSA/LDHs hybrid materials not only have good biocompatibility, but also have good optical energy. The electrostatic attraction between BSA and metal aluminum ions is used. BSA and aluminum sol are assembled into BSA/ aluminum sol; in situ growth technology, aluminum sol on the surface of BSA is used as aluminum source, and LDHs is grown on its surface in situ, thus preparing BSA/LDHs hybrid materials. The prepared hybrid materials have potential applications in biological separation, catalysis, adsorption, sensing and optical domains. In a word, this paper is devoted to the research. The biological structure and biological function are introduced into LDHs to improve the surface properties of LDHs based composites and to develop functional composites with multi-layer, multi-dimensional and even structural functions. Through this study, it is helpful to reveal the interface between the LDHs nanoscale and the biomaterials and the mechanism of the in situ growth of the LDHs nanoscale. It provides a new way to study the structural design and assembly of other layered materials. It provides an experimental basis and theoretical basis for the effective control of the structure and morphology of materials, and also promotes the development of other composite materials and deepens the application of materials.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33
,
本文編號(hào):2051714
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2051714.html
最近更新
教材專著