a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當前位置:主頁 > 科技論文 > 電氣論文 >

納米碳材料在高性能鋰硫電池中的應用研究

發(fā)布時間:2024-07-02 19:29
  鋰硫電池被認為是目前最有前景的新一代鋰離子電池體系,有著極高的能量密度(2600 Wh kg-1),極高的理論容量(1675 mAh g-1)和較低的成本。但是,鋰硫電池的應用仍存在一些問題,比如硫和電池放電產品硫化鈉的絕緣性,電化學反應中間產物聚硫物質溶于電解液而造成的“穿梭效應”,還有硫化鋰的體積膨脹等。所以,增強硫電極的導電性、提高電極材料對于體積膨脹的耐受性和抑制聚硫的擴散使其能被束縛在正極區(qū)域是發(fā)展鋰硫電池的關鍵點。本文以NaCl-KCl和納米碳酸鈣作為雙模版,通過熱解葡萄糖—脲醛樹脂—MOF MIL-53材料,制備得到了 μ-Al2O3修飾的定向介孔碳。葡萄糖—脲醛樹脂與NaCl-KCl填充在MIL-53的孔道中可以避免碳化時候孔道的坍塌和黏連。納米碳酸鈣在MIL-53孔道外面,可以避免在碳化過程中形成密封孔。制備所得的定向介孔碳具有極高的比表面積和豐富的表面氧氮位點,對于聚硫有著極強的吸附力。硫電極展現(xiàn)了極高的放電容量、較長的壽命和極佳的倍率性能,在0.05 ℃下初始容量高達1626 mAh 以及10 ℃情況下有著430 mAh g-1的比容量。在0.2 ℃情況下,電池循...

【文章頁數】:137 頁

【學位級別】:博士

【文章目錄】:
ACKNOWLEDGEMENTS
摘要
ABSTRACT
CHAPTER 1: BACKGROUND AND LITERATURE REVIEW
    1.1 INTRODUCTION
    1.2 PRINCIPLES OF LI-ION BATTERIES
    1.3 PRINCIPLES OF LITHIUM-SULFUR BATTERIES
    1.4 CONFIGURA LION LITHIUM-SULFUR AND LITHIUM-ION BATTERIES
    1.5 CHALLENGES OF LI-S BATTERIES
        1.5.1 Insulating active materials
        1.5.2 Dissolution of polysulfides and the related shuttle effect
        1.5.3 Corrosion of Lithium metal
        1.5.4 Non soluble lithium sulfide and sulfur plating
        1.5.5 Self-discharge
        1.5.6 Volume expansion
    1.6 RECENT ADVANCES IN LI-S BATTERIES
        1.6.1 Sulfur cathodes
            1.6.1.1 Sulfur-carbon nanocomposites
            1.6.1.2 Sulfur-polymer nanocomposites
            1.6.1.3 Polymer-supported sulfur-carbon nanocomposites
            1.6.1.4 Li2S cathodes
            1.6.1.5 Smaller sulfur molecules
            1.6.1.6 Selenium cathodes
            1.6.1.7 Polysulfide catholyte
            1.6.1.8 Porous and free-electrodes current-collectors
        1.6.2 Binder
        1.6.3 Electrolytes
        1.6.4 Lithium anode
        1.6.5 Separators
    1.7 APPLICATIONS
    1.8 VOCABULARY, MAIN CHARACTERISTICS
    1.9 SUMMARY
    1.10 REFERENCES
CHAPTER 2: EXPERIMENTAL APPROACHES
    2.1 CHEMICALS AND MATERIALS
    2.2 CHARACTERIZATION METHODS
        2.2.1 Scanning electron microscope (SEM)
        2.2.2 X-ray photoelectron spectroscopy (XPS)
        2.2.3 X-Ray diffraction (XRD)
        2.2.4 In-situ Ultra-violet/Visible measurements
        2.2.5 Transmission electron microscopy (TEM)
        2.2.6 Brunaeur-emmer-teller (BET)
        2.2.7 Thermogravimetric analysis (TGA)
    2.3 PREPARATION OF POROUS CARBONS (PCS) AND POLYSULFIDE (PS)
        2.3.1 Synthesis of oriented-macroporous-carbon (OMC)
        2.3.2 Preparation of dehydrated watermelon rind (WR)
        2.3.3 Preparation of starch
        2.3.4 PS preparation
    2.4 ELECTROCHEMICAL MEASUREMENT METHODS
        2.4.1 Preparation of S-loaded porous carbons (S@PCs) and cathode
        2.4.2 Cell assembly
        2.4.3 Galvanostatic cycling
        2.4.4 Cyclic voltammetry (CV)
        2.4.5 Electrochemical impedance spectroscopy (EIS)
    2.5 REFERENCES
CHAPTER 3:PERIODICAL ORIENTED-MACROPOROUS-CARBONINCORPORATED WITH Γ-AL2O3 FOR HIGH PERFORMANCE LI-S BATTERY
    3.1 INTRODUCTION
    3.2 RESULTS AND DISCUSSION
        3.2.1 Characterization of oriented-macroporous-carbons
            3.2.1.1 Morphology of the prepared oriented-macroporous-carbon material
            3.2.1.2 TEM investigations
            3.2.1.3 N2 adsorption-desorption isotherms and pore distributionsmeasurements
        3.2.2 PS absorption with oriented-macroporous-carbon and XPS investigations
        3.2.3 Electrochemical performance of oriented-macroporous-carbon
            3.2.3.1 CV and galvanostatic cycleability measurements
            3.2.3.2 Electrochemical impedance spectroscopy and rate performancemeasurements
            3.2.3.3 Charge-discharge profiles and long-term cycle life
    3.3 SUMMARY
    3.4 REFERENCES
CHAPTER 4: PREPARATION AND APPLICATIONS OF MICROPOROUSCARBON DERIVED FROM BIOMASS FOR HIGH PERFORMANCE LI-SBATTERY
    4.1 INTRODUCTION
    4.2 Results and discussion
        4.2.1 Material characterization
            4.2.1.1 Morphology of WR
            4.2.1.2 N2 absorption-desorption isotherms and pore size distributionsmeasurements
            4.2.1.3 XRD patterns and TGA investigations
        4.2.2 PS adsorption with WR
        4.2.3 Electrochemical performance
            4.2.3.1 CV profiles and galvanostatic cycleability measurements
            4.2.3.2 Electrochemical impedance spectroscopy tests
            4.2.3.3 Rate performance measurement
            4.2.3.4 Performance in soft-package batteries
    4.3 SUMMARY
    4.4 REFENRENCES
CHAPTER 5: A NOVEL INSIGHT INTO CATHODE DETERIORATION OFHIGH ENERGY LI-S BATTERY WITH HEAVY SULFUR-LOADING
    5.1 INTRODUCTION
    5.2 RESULTS AND DISCUSSION
        5.2.1 Materials and cathode characterization
            5.2.1.1 Morphology of the porous carbon
            5.2.1.2 N2 adsorption-desorption isotherms,pore size distribution and EDXanalysis
        5.2.2 Electrochemical performance
            5.2.2.1 Performance of pressurized cathode
            5.2.2.2 Nyquist plots of pressed cell and cell appearance before and after cyclesunder an external pressure
            5.2.2.3 Electrochemical performance of the cathode with heavy S-loading underpressure
    5.3 SUMMARY
    5.4 REFERENCES
CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTIVE
    6.1 CONCLUSIONS
    6.2 FUTURE PROSPECTIVE
LIST OF FIGURES
LIST OF TABLES
LIST OF PUBLICATIONS



本文編號:3999899

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/kejilunwen/dianlidianqilunwen/3999899.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶473b0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
惠东县| 亚洲成AV人片一区二区小说| 婷婷综合缴情亚洲狠狠小说| 国产成人av在线免播放观看| 粗暴进入娇小呻吟痛呼| 国产精品久久久久久久久久久久冷 | 国产久热精品无码激情| 精品人妻av一区二区三区| AV无码国产在线观看岛国| 日本无人区码一码二码三码区别| 亚洲精品成a人在线观看| 开心播播网| 婷婷| 色婷婷| 久久噜噜| 欧美大香蕉| 国产一产二产三精华液| 美女视频黄的全免费视频网站| 久久精品呦女| 超碰97人人做人人爱网站| 人妻精品久久无码区| 色综合久久五月色婷婷| 久久99精品久久久水蜜桃| 四虎视频在线精品免费网址| 你懂的在线| 香蕉国产在线| xxx99| 久久夜色精品国产噜噜亚洲sv| 中文无码伦AV中文字幕在线| 性欧美XXXX乳| 色综合久久久无码中文字幕| 无码亚欧激情视频在线观看 | 老熟妇乱子伦牲交视频| 国产成人精品A视频免费福利| 自慰系列无码专区| 久久夜色精品亚洲AV三区| 亚洲人成无码网站18禁10| 中文字幕无码专区人妻系列| 久久99精品国产麻豆宅宅| 内射人妻无套中出无码| 国产交换配乱婬视频|