磁力彈簧式共振型壓電氣泵研究
[Abstract]:Gas diaphragm pump is a small type of fluid pump. It has been widely used in medicine, biology, fine chemical industry, aerospace, MEMS and other fields in recent years.
At present, there are two main types of gas diaphragm pumps in the market, such as electromagnetic diaphragm pump driven by motor cam mechanism and piezoelectric diaphragm pump driven by piezoelectric vibrators. In practical application, the electromagnetic diaphragm pump will have problems such as complex structure, high cost and large noise, while the piezoelectric diaphragm pump has low volume change rate and a piezoelectric vibrator. Heat, fragility, depolarization, and other problems.
In this paper, based on the study of the design theory and key technology of the piezoelectric gas diaphragm pump, the National Natural Science Foundation of China (project number: 50735002), the magnetic spring is first applied to the structural resonance pump, and the related theoretical and technical problems are studied.
The advantage of applying the magnetic spring to the study of the resonant gas pump is that it can increase the volume change rate of the pump body, simplify the structure of the system, reduce the noise and increase the reliability and stability of the system. The most important thing is that the stiffness of the mechanical system can be changed by adjusting the axial gap of the magnetic spring, and then it is very convenient to adjust the whole system. The resonance frequency of a mechanical system.
The piezoelectric vibrator is the core component of the magnetic spring resonance pump, which provides the excitation for the whole resonance system. The piezoelectric vibrator used in this paper is a ring piezoelectric ceramic and a ring substrate which is bonded with epoxy resin. The piezoelectric vibrator is used as part of the resonant pump of the magnetic spring pump, and it is simulated by the modal analysis of the vibrator. The final structural parameters of the piezoelectric vibrator are determined by response analysis.
The axial force of the magnetic spring is theoretically derived from the magnetic charge viewpoint, and the relation between the axial force and the axial distance of the magnetic spring is calculated by the method of discrete summation and MATLAB programming by dividing the cell. Then the relation formula is obtained by the curve fitting method, and the axial stiffness and the axial interval of the magnetic spring are obtained. The axial force of the magnetic spring is measured by the design test, and the relationship between the axial stiffness and the axial force is also obtained by using the method of fitting the fitting curve.
The working principle of the magnetic spring type resonant gas pump is introduced, the working principle of the resonance body is analyzed qualitatively and the effect of the magnetic spring on the whole vibrator is analyzed. The main components are designed, the dynamic model of the part of the vibrator is established, and the factors affecting the displacement of the excited vibration body are obtained; the stiffness of the main components is carried out. The resonance frequency of the vibrator and the displacement of the excited vibrator are measured by the precision impedance analyzer and the laser micrometer. The relationship between the resonance frequency of the excited vibrator and the axial spacing of the magnetic spring is obtained, and the displacement of the central point of the piezoelectric vibrator is compared, and the displacement magnification of the resonant pump vibrator is obtained.
The basic structure and working process of the magnetic spring type resonant pump body are introduced in detail. The diaphragm theory is used to optimize the diaphragm of the pump body, and the structural parameters of the diaphragm are determined. The effect of the volume change rate of the cavity, the flow state and the lag of the valve on the performance of the pump is analyzed in detail, and the test device is designed and measured. Based on the test results, the valve plugging diameter, the width of the cantilever, the height of the chamber and the pretightening height of the valve seat are selected, and the optimum structural parameters of the resonance pump body are finally determined.
The cause of the torsion of the piezoelectric vibrator in the vertical direction is analyzed. Because of the existence of the machining error, the axial stiffness of the magnetic spring in the resonant pump is not quite consistent with the theoretical calculation. The two magnet of the magnetic spring is not completely concentric in the axial direction, which will produce an extra one on the basis of only one axial force in the original. The radial force, the radial force and the axial force will produce the torque to the piezoelectric vibrator connected with the suspension magnet. With the decrease of the axial gap, the radial force becomes larger and the two ring magnet is more and more eccentricity. Therefore, the actual axial stiffness of the magnetic spring is smaller than the theoretical calculation, and the radial stiffness will increase.
The key to the success of the magnetic spring resonance pump lies in the control of the axial stiffness of the magnetic spring, increasing the excitation of the piezoelectric vibrator and improving the utilization efficiency of the piezoelectric vibrator. The control of the axial stiffness of the magnetic spring can draw on the research results obtained by the magnetic levitation train and the magnetic bearing, and the key to increase the excitation of the piezoelectric vibrator is to find out. The piezoelectric ceramics with high quality parameters are made to make the piezoelectric vibrator, and the efficiency of the excitation of the high voltage vibrator must be realized by improving the structure design of the resonant pump.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH38
【相似文獻】
相關(guān)期刊論文 前10條
1 郭志軍,李鯤,楊興玉,卿榮康;一種具有自檢功能的壓電角速率陀螺[J];壓電與聲光;1995年02期
2 董蜀湘,霍玉晶,王樹昕,邱海波;壓電微馬達控制的激光諧振腔調(diào)節(jié)器[J];大連理工大學(xué)學(xué)報;1997年S2期
3 金江,陶寶祺;壓電自適應(yīng)層合板的有限元法分析[J];南京航空航天大學(xué)學(xué)報;1997年02期
4 張學(xué)成;壓電致動器雙向電源研究[J];壓電與聲光;1998年01期
5 李國順;低伏特值的穩(wěn)壓電路[J];電氣時代;2000年12期
6 王斌;一種新型數(shù)控高壓電源[J];世界產(chǎn)品與技術(shù);2000年06期
7 彭太江,常穎,楊志剛,吳博達;超聲減摩用壓電換能器阻抗匹配的試驗研究[J];壓電與聲光;2004年01期
8 ;液靜壓電主軸試驗小結(jié)[J];軸承;1976年01期
9 翁臺蒙,楊建軍,葉慧,孫昌年;用于弱光光譜測量的壓電掃描F—P干涉儀系統(tǒng)[J];光學(xué)學(xué)報;1986年11期
10 王曉慧,袁哲俊;兩種壓電陶瓷微位移器的特性分析與實驗對比[J];壓電與聲光;1994年01期
相關(guān)會議論文 前10條
1 劉軍考;郁朋;陳維山;盛明偉;;高粘度壓電微噴系統(tǒng)的研究[A];2011年機械電子學(xué)學(xué)術(shù)會議論文集[C];2011年
2 毛崎波;;通過壓電分流阻尼技術(shù)抑制結(jié)構(gòu)振動的實驗研究[A];第十屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集(2011)上冊[C];2011年
3 丁皓江;徐榮橋;;壓電扇形環(huán)板的自由振動[A];錢學(xué)森技術(shù)科學(xué)思想與力學(xué)論文集[C];2001年
4 李全祿;;兩種新型壓電集成器件的初試[A];中國聲學(xué)學(xué)會2002年全國聲學(xué)學(xué)術(shù)會議論文集[C];2002年
5 馮永平;鄧明香;;周期復(fù)合材料壓電均勻化常數(shù)的數(shù)值模擬[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進展——2010(13)卷[C];2010年
6 董躍清;晏雄;;基于壓電導(dǎo)電原理的減振復(fù)合材料[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
7 樊尚春;秦杰;劉廣玉;;小型壓電激勵振動筒壓力傳感器[A];壓力計量服務(wù)和測試技術(shù)研討會論文集[C];2003年
8 殷學(xué)綱;李賓;黃尚廉;;點式壓電智能板的振動主動控制[A];“力學(xué)2000”學(xué)術(shù)大會論文集[C];2000年
9 富東慧;侯振德;秦慶華;盧晨霞;;骨裂紋尖端壓電研究[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年
10 王云;徐榮橋;丁皓江;;功能梯度壓電圓板的軸對稱彎曲[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
相關(guān)重要報紙文章 前10條
1 田學(xué)科;從網(wǎng)絡(luò)上監(jiān)控各地電網(wǎng)[N];科技日報;2004年
2 記者 馮競;重慶大學(xué)制出新型壓電生物芯片[N];科技日報;2001年
3 姚學(xué)文 李璀 葉樂;姚守拙:壓電液相振蕩理論的開拓者[N];湖南經(jīng)濟報;2006年
4 山東 宗加春;24V供電的汽車收放機降壓電路[N];電子報;2002年
5 記者王華楠;我國研發(fā)成功壓電精密驅(qū)動技術(shù)[N];中國技術(shù)市場報;2010年
6 趙慧 林妙法;國內(nèi)首套船用高壓電動空壓機站通過驗收[N];中國船舶報;2005年
7 馮繼文 編譯;壓電能源閃光燈[N];電子報;2009年
8 山東 宗加春;24V供電汽車收放機的降壓電路[N];電子報;2003年
9 廣東 徐小平;電容降壓的降壓電容器參數(shù)計算[N];電子報;2004年
10 ;德爾福直接驅(qū)動壓電噴油器技術(shù)量產(chǎn)[N];國際商報;2008年
相關(guān)博士學(xué)位論文 前10條
1 富東慧;骨壓電電壓信號特征的實驗研究[D];天津大學(xué);2008年
2 鄭鵬;鈦酸鋇基陶瓷的壓電物性與鈦酸銅鈣陶瓷的高介電物性[D];山東大學(xué);2010年
3 孫恩偉;鈮鋅酸鉛—鈦酸鉛和鈮鎂銦酸鉛—鈦酸鉛單晶的物性研究[D];哈爾濱工業(yè)大學(xué);2011年
4 高長銀;壓電石英晶片扭轉(zhuǎn)效應(yīng)研究及新型扭矩傳感器的研制[D];大連理工大學(xué);2004年
5 李向陽;層狀壓電/彈光復(fù)合材料電光效應(yīng)研究[D];南京師范大學(xué);2011年
6 杜設(shè)亮;精密機械仿生熱穩(wěn)定構(gòu)件研究[D];浙江大學(xué);2001年
7 張波;壓電石英晶體凝血分析及微陣列免疫傳感器的實驗研究[D];第三軍醫(yī)大學(xué);2002年
8 張進忠;壓電體聲波微生物傳感及其應(yīng)用研究[D];湖南大學(xué);2001年
9 朱滿康;BaO-TiO_2-SiO_2系極性玻璃陶瓷及其薄膜研究[D];北京工業(yè)大學(xué);2005年
10 許立寧;基于MEMS技術(shù)的壓電微噴的研制[D];中國科學(xué)院研究生院(電子學(xué)研究所);2005年
相關(guān)碩士學(xué)位論文 前10條
1 肖春霞;基于Internet和組件技術(shù)的壓電有限元分析系統(tǒng)[D];南京航空航天大學(xué);2004年
2 孫浩;壓電分流電路特性及在結(jié)構(gòu)振動控制中的應(yīng)用研究[D];西北工業(yè)大學(xué);2005年
3 池望青;無線傳感器網(wǎng)絡(luò)自適應(yīng)壓電能量獲取的研究[D];電子科技大學(xué);2010年
4 李軍;智能壓電摩擦阻尼器的控制理論與試驗研究[D];大連理工大學(xué);2005年
5 崔海濤;壓電智能懸臂梁的被動與主動振動控制研究[D];西北工業(yè)大學(xué);2004年
6 武文良;薄膜電子式及壓電智能式電氣轉(zhuǎn)換器控制系統(tǒng)的研制[D];大連理工大學(xué);2003年
7 張海峰;基于神經(jīng)網(wǎng)絡(luò)的壓電智能結(jié)構(gòu)控制方法研究[D];西北工業(yè)大學(xué);2001年
8 黃志奇;壓電微位移驅(qū)動器的結(jié)構(gòu)設(shè)計與仿真[D];電子科技大學(xué);2004年
9 劉鋒偉;壓電生物傳感器及其采集分析系統(tǒng)的研究[D];重慶大學(xué);2004年
10 周文委;結(jié)構(gòu)混凝土壓電機敏監(jiān)測技術(shù)的基礎(chǔ)研究[D];重慶大學(xué);2003年
本文編號:2134926
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/jixiegongcheng/2134926.html