基于小型四旋翼無(wú)人機(jī)的大氣環(huán)境參數(shù)獲取系統(tǒng)研發(fā)
本文選題:大氣環(huán)境污染 切入點(diǎn):環(huán)境監(jiān)測(cè) 出處:《石河子大學(xué)》2017年碩士論文
【摘要】:隨著我國(guó)農(nóng)村城鎮(zhèn)化進(jìn)程和農(nóng)業(yè)經(jīng)濟(jì)的快速發(fā)展,農(nóng)村大氣環(huán)境污染問(wèn)題日益嚴(yán)重。大氣環(huán)境污染不僅會(huì)影響人類身體健康,造成農(nóng)田水土資源污染,影響作物生長(zhǎng),甚至還嚴(yán)重威脅到糧食安全,制約著農(nóng)村可持續(xù)發(fā)展。大氣環(huán)境監(jiān)測(cè)是大氣環(huán)境污染防治工作的基礎(chǔ)和保障,現(xiàn)有的監(jiān)測(cè)技術(shù)主要以架設(shè)地面監(jiān)測(cè)站和衛(wèi)星遙感方式為主,對(duì)于地域廣闊、環(huán)境復(fù)雜的農(nóng)村地區(qū),監(jiān)測(cè)設(shè)施相對(duì)落后,往往存在監(jiān)測(cè)成本較高、靈活度不高、效率低等不足。本文系統(tǒng)設(shè)計(jì)基于小型四旋翼無(wú)人機(jī),開(kāi)展了低成本大氣環(huán)境參數(shù)測(cè)量系統(tǒng)的研究工作。首先,在飛行平臺(tái)方面,完成了飛行器組成單元的設(shè)備選型、組裝工作,并選取懸停狀態(tài)下的四旋翼飛行器為研究對(duì)象,運(yùn)用飛行器動(dòng)力學(xué)、牛頓經(jīng)典力學(xué)等理論完成數(shù)學(xué)模型的構(gòu)建,提出了基于ITAE指標(biāo)的帶有前置濾波的PID優(yōu)化控制算法,使用MATLAB Simulink進(jìn)行了控制品質(zhì)提高的仿真實(shí)驗(yàn)并結(jié)合真機(jī)完成了試飛驗(yàn)證;其次,從監(jiān)測(cè)系統(tǒng)硬件和軟件模塊設(shè)計(jì)入手,選取了Arduino UNO作為處理器,采用DHT11、DSM501A、MQ-7、MG811傳感器分別完成溫濕度、顆粒物濃度、一氧化碳和二氧化碳數(shù)據(jù)獲取工作,并采用Micro SD卡模塊完成數(shù)據(jù)的讀寫、存儲(chǔ)工作;然后,選擇石河子大學(xué)東校區(qū)和石河子南開(kāi)發(fā)區(qū)熱電廠西側(cè)200米處條田為實(shí)驗(yàn)區(qū)域,確定采集點(diǎn)(每個(gè)點(diǎn)持續(xù)采集5min,30s一個(gè)周期,共采集10個(gè)數(shù)據(jù))完成采集實(shí)驗(yàn);最后,針對(duì)采集儀獲取的城市和農(nóng)田監(jiān)測(cè)點(diǎn)數(shù)據(jù),運(yùn)用格拉布斯準(zhǔn)則完成了樣本粗大誤差數(shù)據(jù)的篩選剔除工作,通過(guò)收集整理環(huán)保部官網(wǎng)標(biāo)準(zhǔn)數(shù)據(jù),使用最小二乘擬合方法實(shí)現(xiàn)了篩選后城市樣本數(shù)據(jù)和官網(wǎng)數(shù)據(jù)的曲線擬合,利用皮爾遜積矩系數(shù)分析驗(yàn)證了相關(guān)性,根據(jù)擬合關(guān)系反演農(nóng)田標(biāo)準(zhǔn)數(shù)據(jù),進(jìn)而采用層次分析法實(shí)現(xiàn)了農(nóng)田及城市的環(huán)境質(zhì)量等級(jí)評(píng)價(jià)。系統(tǒng)實(shí)驗(yàn)和軟件仿真實(shí)驗(yàn)的結(jié)果表明:針對(duì)四旋翼飛行器系統(tǒng),在輸入為單位階躍信號(hào)且擾動(dòng)作用較小可忽略時(shí),采用基于ITAE指標(biāo)的帶有前置濾波的PID控制算法后,系統(tǒng)穩(wěn)態(tài)誤差為0,調(diào)節(jié)時(shí)間ts1s,系統(tǒng)超調(diào)量控制在5%以內(nèi),滿足誤差帶Δ=2%時(shí)系統(tǒng)的動(dòng)態(tài)性能指標(biāo);系統(tǒng)采集的數(shù)據(jù)與官網(wǎng)數(shù)據(jù)擬合模型精度高,相關(guān)性均達(dá)到0.97,環(huán)境等級(jí)評(píng)級(jí)結(jié)果的準(zhǔn)確性達(dá)到93.3%。經(jīng)過(guò)軟件仿真、實(shí)際測(cè)試、數(shù)據(jù)分析等工作,驗(yàn)證了采集系統(tǒng)的可靠性和數(shù)據(jù)的有效性,可為今后此類采集系統(tǒng)的設(shè)計(jì)提供一定的參考。
[Abstract]:With the rapid development of rural urbanization and agricultural economy, the problem of air pollution in rural areas is becoming more and more serious.Air pollution will not only affect the health of human beings, but also affect the soil and water resources pollution, crop growth, and even seriously threaten the food security, restricting the sustainable development of rural areas.Atmospheric environment monitoring is the basis and guarantee of the prevention and control of atmospheric environment pollution. The existing monitoring technology mainly consists of the erection of ground monitoring stations and satellite remote sensing, and the monitoring facilities are relatively backward in the rural areas with vast areas and complicated environment.There are many shortcomings such as high monitoring cost, low flexibility, low efficiency and so on.In this paper, a low-cost measurement system for atmospheric environment parameters is designed based on a small four-rotor UAV.First of all, in the aspect of flight platform, the equipment selection and assembly of the aircraft component unit are completed, and the four-rotor aircraft in hovering state is selected as the research object, and the dynamics of the vehicle is used.The mathematical model is constructed by Newton's classical mechanics theory, and a PID optimal control algorithm with prefilter based on ITAE index is proposed. The simulation experiment of improving control quality with MATLAB Simulink is carried out and the flight test is completed in combination with real machine.Starting with the hardware and software module design of the monitoring system, Arduino UNO is selected as the processor, and the temperature and humidity, particle concentration, carbon monoxide and carbon dioxide data acquisition are obtained by using the DHT11 / DSM501AX MQ-7MG811 sensor, respectively.The Micro SD card module is used to read, write and store the data. Then, selecting the 200m strip field in the east campus of Shihezi University and the west side of the thermal power plant in the south development zone of Shihezi as the experimental area, the collection point is determined (each point is continuously collected for 5 mins for a period of 30 s).Finally, the grabs criterion is used to complete the screening and culling of the gross error data of the samples, according to the data of urban and farmland monitoring points acquired by the collector.Through collecting and arranging the standard data of official website of the Ministry of Environmental Protection, the curve fitting of the selected city sample data and the official website data is realized by using the least square fitting method, and the correlation is verified by Pearson moment coefficient analysis.According to the fitting relation, the farmland standard data were retrieved, and then the environmental quality grade evaluation of farmland and city was realized by using the analytic hierarchy process (AHP).The results of system experiment and software simulation show that when the input signal is unit step signal and the disturbance is negligible, the PID control algorithm with prefilter based on ITAE index is adopted.The steady-state error of the system is 0, the adjusting time ts1s, the overshoot of the system is controlled within 5%, and the dynamic performance index of the system is satisfied with the error band 螖 = 2.The correlation reached 0.97, and the accuracy of environmental rating reached 93.3.The reliability of the acquisition system and the validity of the data are verified by software simulation, actual test and data analysis, which can provide a certain reference for the design of this kind of acquisition system in the future.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X87
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 嚴(yán)孝鑫;張航;周鑫;張帥;邱紫陽(yáng);仇國(guó)慶;;基于四旋翼無(wú)人機(jī)的環(huán)境監(jiān)測(cè)系統(tǒng)[J];自動(dòng)化與儀器儀表;2016年10期
2 吳昊;;基于無(wú)人機(jī)的大氣環(huán)境監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];信息通信;2016年09期
3 張?zhí)煲?趙慶展;劉偉;;四旋翼飛行器懸停模式ITAE最優(yōu)PID控制[J];電光與控制;2016年08期
4 本刊編輯部;;2014中國(guó)環(huán)境狀況公報(bào)發(fā)布[J];中國(guó)能源;2015年08期
5 尚春林;張敏;;提高大氣環(huán)境監(jiān)測(cè)質(zhì)量的措施探討[J];資源節(jié)約與環(huán)保;2015年07期
6 蘇立軍;朱紅娟;李小民;董海瑞;;四旋翼PIDNN控制器設(shè)計(jì)[J];電光與控制;2015年02期
7 劉浩蓬;龍長(zhǎng)江;萬(wàn)鵬;王曉誼;胡奔;;植保四軸飛行器的模糊PID控制[J];農(nóng)業(yè)工程學(xué)報(bào);2015年01期
8 王納林;;基于MQ-7傳感器煤氣報(bào)警系統(tǒng)[J];自動(dòng)化技術(shù)與應(yīng)用;2014年12期
9 渠淼;牛國(guó)鋒;冒張霄;孫丹丹;;基于Arduino的智能環(huán)境監(jiān)控系統(tǒng)設(shè)計(jì)[J];微型機(jī)與應(yīng)用;2014年20期
10 張鐳;李浩;;四旋翼飛行器模糊PID姿態(tài)控制[J];計(jì)算機(jī)仿真;2014年08期
相關(guān)碩士學(xué)位論文 前10條
1 劉昌龍;四旋翼無(wú)人機(jī)建模與控制問(wèn)題研究[D];湖北工業(yè)大學(xué);2016年
2 馮煒;基于無(wú)線以太網(wǎng)面向大氣環(huán)境監(jiān)測(cè)系統(tǒng)的開(kāi)發(fā)[D];吉林大學(xué);2016年
3 劉丹丹;基于Arduino平臺(tái)的光散射式沙塵顆粒物濃度測(cè)量系統(tǒng)設(shè)計(jì)及應(yīng)用[D];寧夏大學(xué);2015年
4 趙宇;城市道邊空氣質(zhì)量自動(dòng)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
5 朱菲菲;小型無(wú)人機(jī)大氣數(shù)據(jù)測(cè)量系統(tǒng)設(shè)計(jì)[D];西安電子科技大學(xué);2014年
6 張楠;基于ARM的大氣環(huán)境監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)[D];哈爾濱理工大學(xué);2014年
7 楊立志;基于Wi-Fi的室內(nèi)空氣質(zhì)量數(shù)據(jù)采集與分析系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];沈陽(yáng)工業(yè)大學(xué);2014年
8 劉莉欣;微小型四旋翼飛行器辨識(shí)建模研究[D];南京航空航天大學(xué);2014年
9 沈龍騰;一種基于參數(shù)辨識(shí)的直升機(jī)飛行動(dòng)力學(xué)建模方法研究[D];南京航空航天大學(xué);2013年
10 王樹(shù)剛;四旋翼直升機(jī)控制問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號(hào):1724462
本文鏈接:http://www.wukwdryxk.cn/shengtaihuanjingbaohulunwen/1724462.html