a国产,中文字幕久久波多野结衣AV,欧美粗大猛烈老熟妇,女人av天堂

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

黑曲霉高產(chǎn)檸檬酸機(jī)制及代謝調(diào)控研究

發(fā)布時(shí)間:2018-08-12 13:58
【摘要】:檸檬酸作為生產(chǎn)量最大的有機(jī)酸,廣泛應(yīng)用于食品、醫(yī)藥、洗滌劑和化妝品等領(lǐng)域。目前檸檬酸主要通過(guò)黑曲霉進(jìn)行深層有氧發(fā)酵來(lái)生產(chǎn),產(chǎn)量和轉(zhuǎn)化率均已達(dá)到較高水平,但根據(jù)Alvarez-Vasquez的模型,仍然有提高空間,要進(jìn)一步加強(qiáng)檸檬酸的生產(chǎn)需要從基因組和轉(zhuǎn)錄組水平探索黑曲霉高產(chǎn)檸檬酸機(jī)制,以此來(lái)指導(dǎo)代謝調(diào)控。此外,檸檬酸生產(chǎn)菌株經(jīng)過(guò)多輪誘變形成短粗菌絲且細(xì)胞壁增厚,遺傳轉(zhuǎn)化困難且缺少有力的代謝調(diào)控工具,需要研究適用于檸檬酸生產(chǎn)菌株的轉(zhuǎn)化方法和代謝調(diào)控元件。本論文對(duì)黑曲霉檸檬酸工業(yè)生產(chǎn)菌株H915-1建立了遺傳轉(zhuǎn)化方法,并以H915-1及其誘變株為研究對(duì)象,通過(guò)比較基因組學(xué)和轉(zhuǎn)錄組學(xué),探討了黑曲霉高產(chǎn)檸檬酸的機(jī)制,進(jìn)而發(fā)現(xiàn)了低pH誘導(dǎo)的啟動(dòng)子Pgas可以作為動(dòng)態(tài)調(diào)控的基因元件,最后通過(guò)調(diào)整葡萄糖轉(zhuǎn)運(yùn)蛋白的表達(dá)提高了檸檬酸的產(chǎn)量。主要研究結(jié)果如下:(1)對(duì)黑曲霉H915-1的原生質(zhì)體形成條件進(jìn)行優(yōu)化并建立了遺傳轉(zhuǎn)化系統(tǒng)。最優(yōu)酶解液配比為5 mg×m L~(-1)溶壁酶、0.2 U×m L~(-1)幾丁質(zhì)酶和460 U×m L~(-1)葡萄糖醛酸酶;優(yōu)化后的原生質(zhì)體制備條件:滲透壓穩(wěn)定劑為0.7 M KCl,菌體量15 mg,酶解溫度37°C,菌球直徑50μm。采用PEG介導(dǎo)法,利用共轉(zhuǎn)化的方式,可以使2個(gè)表達(dá)框整合到黑曲霉基因組中,共整合概率為58%。在未敲除非同源末端連接(non-homologous end joining,NHEJ)基因Ku-70的情況下,利用2.3 kb同源臂對(duì)oah進(jìn)行敲除,同源整合的概率為65%,基因敲除菌株在整個(gè)發(fā)酵過(guò)程中不再合成草酸。(2)以黑曲霉H915-1為出發(fā)菌株,利用等離子誘變和高通量篩選獲得2株低產(chǎn)菌株A1和L2,它們的檸檬酸產(chǎn)量分別由出發(fā)菌株的157 g×L~(-1)降為117 g×L~(-1)和76 g×L~(-1)。對(duì)生產(chǎn)菌株和誘變株A1和L2進(jìn)行基因組測(cè)序、拼接和注釋,它們的基因組大小分別為35.98 Mb、34.64 Mb和36.45 Mb,共發(fā)現(xiàn)59個(gè)基因家族存在差異,單核苷酸多態(tài)性(Single nucleotide polymorphism,SNP)和插入缺失(insertion-deletion,INDEL)位點(diǎn)1210處,結(jié)構(gòu)性變異(Structural variation,SV)52處,共涉及35個(gè)基因的表達(dá)。中心代謝通路的順烏頭酸酶和γ-氨基丁酸(γ-aminobutyric acid,GABA)通路的琥珀酸半醛脫氫酶基因發(fā)生變異。(3)對(duì)黑曲霉H915-1在檸檬酸合成階段的4個(gè)時(shí)間點(diǎn)和菌體生長(zhǎng)階段的轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)479個(gè)基因的表達(dá)發(fā)生變化。確定了黑曲霉中心代謝通路的主效基因。糖酵解通路的大部分酶的表達(dá)沒(méi)有變化,磷酸丙糖異構(gòu)酶表達(dá)上調(diào),丙酮酸激酶表達(dá)下調(diào),TCA循環(huán)大部分酶的表達(dá)下調(diào);發(fā)現(xiàn)GABA通路關(guān)鍵酶的表達(dá)上調(diào);ATP-檸檬酸裂解酶表達(dá)上調(diào),與TCA循環(huán)一起構(gòu)成了一條消耗ATP的無(wú)效循環(huán);鑒定到35個(gè)轉(zhuǎn)運(yùn)蛋白表達(dá)持續(xù)上調(diào),包含3個(gè)有機(jī)陰離子轉(zhuǎn)運(yùn)蛋白,以及1個(gè)單羧酸轉(zhuǎn)運(yùn)蛋白。(4)通過(guò)轉(zhuǎn)錄組分析,篩選到低pH誘導(dǎo)表達(dá)的基因gas并進(jìn)行啟動(dòng)子預(yù)測(cè),利用報(bào)告基因熒光蛋白(s GFP)進(jìn)行啟動(dòng)子表達(dá)強(qiáng)度的驗(yàn)證,Pgas在pH 2.0時(shí)被誘導(dǎo)而強(qiáng)烈表達(dá)s GFP,表達(dá)強(qiáng)度和Pgpd A在pH 2.0時(shí)啟動(dòng)表達(dá)的能力一致。利用Pgas啟動(dòng)順烏頭酸脫羧酶(s CAD)基因的表達(dá)賦予黑曲霉H915-1合成衣康酸的能力,發(fā)酵24 h和108 h的s CAD的表達(dá)量比8 h的表達(dá)量分別增加了2.37和3.23倍,轉(zhuǎn)化子的衣康酸產(chǎn)量達(dá)到4.92 g×L~(-1),為Pgpd A-CAD轉(zhuǎn)化子產(chǎn)量的5倍。利用q PCR對(duì)Pgas的誘導(dǎo)能力進(jìn)行驗(yàn)證,發(fā)現(xiàn)Pgas僅受pH的誘導(dǎo),受酸種類的影響很小,酸根離子濃度對(duì)Pgas沒(méi)有影響,且pH與Pgas的啟動(dòng)能力存在線性關(guān)系。通過(guò)DNA pull-down技術(shù)鑒定到2個(gè)與Pgas特異結(jié)合的轉(zhuǎn)錄調(diào)節(jié)因子X(jué)P_001388781.2和XP_001396281。(5)基于轉(zhuǎn)錄組分析,對(duì)假定的葡萄糖轉(zhuǎn)運(yùn)蛋白進(jìn)行進(jìn)化樹(shù)分析和序列比對(duì)分析,獲得與Kl HGT1親緣關(guān)系較近的evm.model.unitig_0.1770序列,經(jīng)跨膜預(yù)測(cè)該蛋白含有11個(gè)跨膜區(qū)域,N端在細(xì)胞膜內(nèi),C端在胞內(nèi),命名為An HGT1。在限制性葡萄糖培養(yǎng)基上進(jìn)行生長(zhǎng)實(shí)驗(yàn),HGT轉(zhuǎn)化子的菌落直徑比對(duì)照增加50%~150%。在發(fā)酵后期補(bǔ)加30 g×L~(-1)葡萄糖后HGT1轉(zhuǎn)化子完全消耗葡萄糖的時(shí)間比H915-1減少12 h。HGT1轉(zhuǎn)化子的檸檬酸產(chǎn)量比對(duì)照增加了14.7%,發(fā)酵時(shí)間縮短了6 h,最大比產(chǎn)酸速率提升了29.5%,提高了發(fā)酵生產(chǎn)強(qiáng)度。
[Abstract]:Citric acid, as the most productive organic acid, is widely used in food, medicine, detergent, cosmetics and other fields. At present, citric acid is mainly produced by Aspergillus Niger deep aerobic fermentation. The yield and conversion rate have reached a higher level. However, according to the Alvarez-Vasquez model, there is still room for improvement, and citric acid should be further strengthened. The production of Aspergillus Niger requires exploring the mechanism of high citric acid production at the genome and transcriptome levels to guide metabolic regulation. In addition, citric acid producing strains undergo multiple rounds of mutagenesis to form short thick mycelia with thickened cell walls, difficult genetic transformation and lack of powerful metabolic control tools. Therefore, it is necessary to study the transformation of citric acid producing strains. METHODS AND METABOLISM REGULATING ELEMENTS.A genetic transformation method was established for Aspergillus Niger citric acid producing strain H915-1. Taking H915-1 and its mutants as research objects, the mechanism of citric acid production by Aspergillus niger was explored by comparative genomics and transcriptome, and the promoter Pgas induced by low pH was found to be a dynamic regulator. The main results are as follows: (1) The protoplast formation conditions of Aspergillus Niger H915-1 were optimized and a genetic transformation system was established. The optimal ratio of enzymatic hydrolysate was 5 mg (-1) lysozyme, 0.2 U (-1) chitinase and 460 U 65507 (-1) glucuronidase; optimized conditions for protoplast preparation: osmotic stabilizer 0.7 M KCl, cell mass 15 mg, enzymatic hydrolysis temperature 37 In the case of NHEJ gene Ku-70, the 2.3 KB homologous arm was used to knock out oah, and the probability of homologous integration was 65%. Oxalic acid was not synthesized in the whole fermentation process. (2) Two low-yield strains A1 and L2 were obtained by plasma mutation and high throughput screening with Aspergillus Niger H915-1 as the starting strain. Citric acid production decreased from 157 g (-1) to 117 g (-1) and 76 g (-1), respectively. Genome sequencing, splicing and annotation were performed on the production strain and mutant strains A1 and L2. Their genome sizes were 35.98 Mb, 34.64 Mb and 36.45 Mb, respectively. A total of 59 gene families were found to be different and single nucleotide polymorphisms (SNPs) were detected. Polymorphism, SNP, and insertion-deletion (INDEL) loci were 1210, and structural variation (SV) 52, involving 35 genes. Cis-aconitase and gamma-aminobutyric acid (GABA) pathways in the central metabolic pathway were mutated in succinic hemialdehyde dehydrogenase genes. The transcriptome data of 15-1 were analyzed at four time points during citric acid synthesis and at the growth stage of the bacteria, and 479 genes were found to have changed. The main genes in the central metabolic pathway of Aspergillus niger were identified. The expression of most enzymes in the glycolysis pathway remained unchanged, the expression of triose phosphate isomerase was up-regulated, and pyruvate kinase was down-regulated. The expression of most of the enzymes in the TCA cycle was down-regulated; the expression of the key enzymes in the GABA pathway was up-regulated; the expression of ATP-citrate lyase was up-regulated, which together with the TCA cycle constituted an ineffective ATP-depleting cycle; 35 transporters were identified to be up-regulated continuously, including three organic anion transporters and one monocarboxylate transporter. Transcriptome analysis showed that low-pH-induced gene gas was screened and its promoter was predicted. Promoter expression intensity was verified by reporter gene fluorescent protein (s GFP). Pgas was induced to express s GFP strongly at pH 2.0, and the expression intensity was consistent with that of PgpdA at pH 2.0. The expression of CAD gene endowed Aspergillus Niger H915-1 with the ability to synthesize itaconic acid. The expression of s CAD at 24 h and 108 h increased 2.37 and 3.23 times than that at 8 h, respectively. The yields of itaconic acid reached 4.92 g (-1) and 5 times that of Pgpd A-CAD. The induction ability of Pgas was verified by q-PCR. Two transcription regulators, XP_001388781.2 and XP_001396281, specifically binding to Pgas were identified by DNA pull-down technique. Evm. model. unitig_0. 1770 sequence, which was closely related to Kl HGT1, was obtained by chemical tree analysis and sequence alignment analysis. It was predicted that the protein contained 11 transmembrane regions, N-terminal in the cell membrane and C-terminal in the cell membrane, named ANHGT1. The total glucose consumption time of HGT1 transformer was 12 h less than that of H915-1. The citric acid yield of HGT1 transformer was increased by 14.7%, fermentation time was shortened by 6 h, and the maximum specific acid production rate was increased by 29.5%.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ921.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前1條

1 孔宏智;;從基因組到多樣性[J];生物多樣性;2014年01期

相關(guān)會(huì)議論文 前3條

1 李秋實(shí);徐江;朱英杰;孫超;宋經(jīng)元;陳士林;;基于流式細(xì)胞術(shù)的赤芝基因組大小估測(cè)[A];第十一屆全國(guó)青年藥學(xué)工作者最新科研成果交流會(huì)論文集[C];2012年

2 張琳琳;李莉;許飛;亓海剛;王曉通;張國(guó)范;;長(zhǎng)牡蠣基因組fosmid文庫(kù)的構(gòu)建及分析[A];中國(guó)動(dòng)物學(xué)會(huì)、中國(guó)海洋湖沼學(xué)會(huì)貝類學(xué)會(huì)分會(huì)第十四次學(xué)會(huì)研討會(huì)論文摘要匯編[C];2009年

3 陳曉丹;王永;盧軍;朱利泉;王小佳;;蕓薹屬A基因組DNA封阻下的C染色體組核型分析[A];第九屆西南三省一市生物化學(xué)與分子生物學(xué)學(xué)術(shù)交流會(huì)論文集[C];2008年

相關(guān)重要報(bào)紙文章 前10條

1 宗合;科學(xué)家破譯木豆基因組將加速育種發(fā)展[N];糧油市場(chǎng)報(bào);2011年

2 記者 夏靜 通訊員 范敬群;我首個(gè)果樹(shù)基因組序列圖譜完成[N];光明日?qǐng)?bào);2012年

3 鐵錚 記者 趙鳳華;我科學(xué)家繪制出毛白楊基因組序列框架圖[N];科技日?qǐng)?bào);2011年

4 仲亞;靈芝全基因組精細(xì)圖譜發(fā)布[N];中國(guó)中醫(yī)藥報(bào);2012年

5 記者 譚大躍 通訊員 王靜思 梁藝染;中美科學(xué)家合作解碼螞蟻基因組[N];深圳特區(qū)報(bào);2010年

6 記者 張聰;我國(guó)首發(fā)丹參基因組框架圖[N];中國(guó)中醫(yī)藥報(bào);2010年

7 記者 劉傳書(shū);我科學(xué)家繪出大熊貓“晶晶”基因組精細(xì)圖[N];科技日?qǐng)?bào);2009年

8 記者 譚大躍 通訊員 逄莎莎;白菜全基因組研究成果發(fā)表[N];深圳特區(qū)報(bào);2011年

9 記者 吳春燕;石斑魚(yú)全基因組序列圖譜繪制完成[N];光明日?qǐng)?bào);2011年

10 宋明輝;廣東破解石斑魚(yú)基因圖譜[N];中國(guó)漁業(yè)報(bào);2011年

相關(guān)博士學(xué)位論文 前10條

1 劉金定;昆蟲(chóng)基因組注釋方法改進(jìn)及兩種昆蟲(chóng)基因組分析[D];南京農(nóng)業(yè)大學(xué);2014年

2 程虹;一株海洋細(xì)菌Gilvimarinus polysaccharolyticus YN3~T多相分類學(xué)研究及六株鹽環(huán)境來(lái)源微生物全基因組生物信息學(xué)分析[D];浙江大學(xué);2015年

3 彭婷婷;新嗜熱菌Thermoanarobacter sp.YS13基因組序列以及生長(zhǎng)和發(fā)酵性質(zhì)的分析[D];華中農(nóng)業(yè)大學(xué);2016年

4 劉玉玲;棉花基于FISH的單染色體圖譜及亞基因組和Oligo序列鑒定[D];華中農(nóng)業(yè)大學(xué);2016年

5 殷嫻;黑曲霉高產(chǎn)檸檬酸機(jī)制及代謝調(diào)控研究[D];江南大學(xué);2017年

6 張麗敏;高梁基因組內(nèi)大片段獲得與缺失變異挖掘及其與重要農(nóng)藝性狀的關(guān)聯(lián)分析[D];吉林大學(xué);2013年

7 周正奎;全基因組關(guān)聯(lián)分析和全基因組預(yù)測(cè)法解析犬髖關(guān)節(jié)疾病[D];西北農(nóng)林科技大學(xué);2011年

8 黃金龍;馬屬基因組和染色體快速進(jìn)化的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年

9 曹月青;鑒定不同基因組之間差異序列的新方法研究[D];重慶大學(xué);2005年

10 凌娜;節(jié)旋藻/螺旋藻基因組特性初探及硝酸鹽轉(zhuǎn)運(yùn)蛋白基因克隆與序列分析[D];中國(guó)海洋大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 周峰;黑曲霉AS3.350基因組分析和轉(zhuǎn)錄組表達(dá)研究[D];華南理工大學(xué);2015年

2 李奎;谷子基因組中近期節(jié)段式重復(fù)研究[D];昆明理工大學(xué);2015年

3 孫宇輝;YH基因組二倍體的分型及組裝[D];華南理工大學(xué);2014年

4 李世杰;結(jié)核分枝桿菌基因組重注釋研究[D];電子科技大學(xué);2014年

5 白婷婷;“太歲”的生物學(xué)特性及部分基因組測(cè)量的研究[D];遼寧大學(xué);2011年

6 龍科任;利用基因組重測(cè)序鑒定巴克夏豬的人工選擇痕跡[D];四川農(nóng)業(yè)大學(xué);2015年

7 楊超;幽門螺桿菌(Helicobacter pylori)比較基因組學(xué)分析及基因組減小分子機(jī)制的探討[D];中國(guó)海洋大學(xué);2015年

8 李建凱;兩株低溫噬菌體生物學(xué)特性及基因組解析[D];昆明理工大學(xué);2016年

9 李育先;茄科作物基因組的多重序列比對(duì)與進(jìn)化研究[D];華北理工大學(xué);2016年

10 吳曉龍;皰疹病毒目(Herpesvirales)基因組中微衛(wèi)星序列的比較分析[D];湖南大學(xué);2015年

,

本文編號(hào):2179271

資料下載
論文發(fā)表

本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/gckjbs/2179271.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9dfab***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
漂亮人妻被强中文字幕久久婷| 97人人超碰国产精品最新| www.黄色网| 国产av无码久久精品| 亚洲国产综合无码一区| 精品国产一区二区三区国产馆杂枝| 办公室被绑奶头调教羞辱OL| 无码国内精品久久人妻蜜桃| 亚洲国产成人精品福利在线观看 | 欧美不卡视频一区发布| 久久精品国产亚洲av不卡 | 热久久av| 麻豆影音| 扒开老师大腿猛进AAA片| 精品无码中文视频在线观看| 久久久久亚洲AV无码专区电影 | 少妇亚洲| 久色伊人| 女人被弄到高潮叫床免| 国产精品国产三级国产AV麻豆| 国产成人a视频高清在线观看| 国产在线精品欧美日韩电影 | 精品内射| 国产又色又爽又黄的| 2020日日夜夜噜噜噜com| 精品人妻无码AⅤ一区二区91| 好紧好爽好深再快点AV在线| 午夜福利国产在线观看1| 日韩高清在线高清免费| 黑人巨大精品欧美一区二区奶水| 久久夜靖品| 婷婷色综合网| 毛片精品| 国产熟人AV一二三区| 大屁股熟女一区二区三区| 婷婷成人五月综合激情| 月夜直播视频免费观看| 亚洲国产精品久久久久婷婷图片 | GOGO高清大胆全人艺术| 日韩三级| 超碰网址|