品種及栽培環(huán)境對糜子淀粉理化性質(zhì)影響研究
本文選題:糜子 + 粳糯性 ; 參考:《西北農(nóng)林科技大學(xué)》2016年博士論文
【摘要】:糜子是我國干旱半干旱地區(qū)的重要糧食作物,富含蛋白質(zhì)、淀粉、膳食纖維及多種微量元素,是重要的醫(yī)食同源型食品資源,備受營養(yǎng)學(xué)家和消費(fèi)者青睞。但因其適口性較差,加工特性不佳,未被廣泛應(yīng)用。淀粉作為糜子籽粒的主要組分,其理化性質(zhì)影響著糜子的加工利用與功能特性,目前有關(guān)其淀粉理化性質(zhì)的研究鮮見報(bào)道。因此,研究不同基因型糜子品種淀粉理化特性,篩選適于市場需求的加工品種,對實(shí)現(xiàn)糜子加工增值,促進(jìn)產(chǎn)區(qū)農(nóng)民增收和農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義。本研究以12個(gè)粳性糜子品種和7個(gè)糯性糜子品種為材料,系統(tǒng)地研究了糜子淀粉的顆粒形態(tài)、晶體結(jié)構(gòu)、直鏈淀粉含量、透明度、凍融穩(wěn)定性、凝沉性、溶解度與膨脹度、糊化特性和熱焓特性等理化性質(zhì),探究了環(huán)境生態(tài)條件對糜子淀粉理化性質(zhì)的調(diào)控效應(yīng),并與蕎麥、玉米、馬鈴薯淀粉進(jìn)行了比較分析。研究得出以下主要結(jié)論:(1)不同粳性糜子品種間淀粉直鏈淀粉含量、透明度、凍融穩(wěn)定性、凝沉性、溶解度與膨脹度以及糊化特性均存在顯著差異。粳性糜子淀粉顆粒呈棱角圓滑的多面體形或者球形,多面體形顆粒粒徑較大且所占比例較高,各品種間沒有明顯差異,部分淀粉顆粒表面有凹痕,粒徑大小范圍為3.76~12.02μm,結(jié)晶構(gòu)型均屬于為A型。參試粳性糜子品種淀粉中直鏈淀粉含量、透光率、凍融析水率和凝沉體積百分比分別為8.01%~28.02%、9.93%~18.03%、32.43%~47.06%和15.5%~18.03%;90℃的溶解度與膨脹度分別為11.87%~22.67%、15.37%~21.46%;糊化指標(biāo)中峰值黏度、破損值、回生值和糊化溫度分別為1.979~2.887 Pa·s、0.491~0.827 Pa·s、0.739~1.136 Pa·s和62.80~64.45℃。參試粳性糜子品種中,固05-223透明度最高,凍融穩(wěn)定性和抗凝沉性最好,且峰值黏度最大,冷糊穩(wěn)定性最好,抗老化能力強(qiáng),易于糊化,適合用于飲料制品及冷凍食品的加工與利用。(2)不同糯性糜子品種間淀粉直鏈淀粉含量、透明度、凍融穩(wěn)定性、凝沉性、糊化特性及熱焓特性差異顯著。糯性糜子淀粉顆粒呈多角形或球形,多角形顆粒較大且所占比例較高,棱角并不十分明顯,有些淀粉顆粒表面出現(xiàn)凹陷結(jié)構(gòu),粒徑范圍為2.86~10.08μm,結(jié)晶構(gòu)型均為A型。糯性糜子品種淀粉中直鏈淀粉含量、淀粉糊的透光率、凍融析水率和凝沉體積百分比分別為0.124%~1.391%、26.47%~32.05%、18.42%~26.94%和9.78%~10.27%;糊化指標(biāo)中峰值黏度、破損值、回生值和糊化溫度分別為3.144~3.515 Pa·s、0.779~0.906 Pa·s、0.197~0.566 Pa·s和62.80~63.75℃;熱焓特性指標(biāo)中起始溫度、峰值溫度、終結(jié)溫度及熱焓值的范圍分別為67.87~70.79℃、74.57~75.94℃、80.38~81.06℃和10.367~10.670 J/g。參試糯性糜子品種中,輻07-405淀粉的抗凝沉性和熱糊穩(wěn)定性最好,更適合用作食品穩(wěn)定劑及高溫罐制食品的加工材料。(3)不同生態(tài)區(qū)參試糜子品種的農(nóng)藝性狀、產(chǎn)量表現(xiàn)及淀粉理化性質(zhì)存在顯著性差異。10個(gè)糜子品種的株高、穗長、穗重、千粒重及產(chǎn)量表現(xiàn)在3個(gè)生態(tài)區(qū)不完全一致,其中差異最明顯的為產(chǎn)量表現(xiàn),陜西榆林地區(qū)(6488.0kg/hm2)顯著地高于陜西延安(2764.0kg/hm2)和山西大同(3172.3kg/hm2)地區(qū),這可能與不同生態(tài)區(qū)栽培條件以及糜子生育期內(nèi)的降水量和日照時(shí)數(shù)有關(guān)。各糜子品種在3個(gè)參試區(qū)淀粉顆粒均表現(xiàn)為不規(guī)則多面體形或球形,多面體形顆粒所占比例較高且顆粒較大,球形顆粒小而少,部分淀粉顆粒表面因堿液腐蝕出現(xiàn)了凹陷現(xiàn)象,陜西榆林、陜西延安和山西大同3個(gè)生態(tài)區(qū)的糜子淀粉顆粒粒徑分別為3.54~12.02μm、3.62~13.14μm和3.10~12.06μm,晶體結(jié)構(gòu)均為a型,但各糜子品種淀粉的衍射強(qiáng)度存在差異。在陜西榆林、陜西延安和山西大同3個(gè)參試區(qū),糜子淀粉中直鏈淀粉含量分別為8.01%~28.02%、7.65%~25.70%和8.81%~22.38%,透光率分別為9.93%~18.03%、10.13%~16.40%和10.17%~16.43%,凍融析水率分別為2.43%~47.07%、39.44%~55.50%和35.52%~45.83%。各糜子淀粉中直連淀粉含量、透光率及凍融析水率的總體平均值在3個(gè)參試區(qū)由高到低的依次是陜西榆林(22.77%)陜西延安(20.52%)山西大同(19.61%)、陜西榆林(12.73%)陜西延安(11.93%)山西大同(11.82%)和陜西延安(46.89%)山西大同(41.86%)陜西榆林(39.02%)。其參試糜子淀粉糊化的平均峰值黏度、破損值、回生值在3個(gè)參試區(qū)的高低次序均為:山西大同(0.874、1.072、1.326pa·s)陜西延安(0.643、0.714、0.923pa·s)陜西榆林(2.437、2.881、0.864pa·s)。在3個(gè)不同生態(tài)區(qū)淀粉凍融穩(wěn)定性均最好,峰值黏度最高,且冷糊穩(wěn)定性最強(qiáng)的品種均為固05-223,而熱糊穩(wěn)定性最好的品種均為蒙粳糜7號,其他品種淀粉的理化性質(zhì)在不同參試區(qū)表現(xiàn)趨勢不完全一致。方差分析表明,糜子淀粉的直鏈淀粉含量、凍融穩(wěn)定性及糊化特性均受基因型、環(huán)境及基因型與環(huán)境互作效應(yīng)的極顯著影響,而透明度僅受基因型、環(huán)境的顯著影響,受基因型與環(huán)境互作效應(yīng)影響不顯著。(4)糜子淀粉與蕎麥、玉米、馬鈴薯淀粉的直鏈淀粉含量、透明度、凍融穩(wěn)定性及糊化特性均存在顯著性差異。糜子淀粉顆粒呈棱角圓滑的多角體形或球形,多角形顆粒較大且所占比例較高,與蕎麥、玉米淀粉顆粒相似,但與馬鈴薯淀粉顆粒不同。粳性糜子淀粉的粒徑(7.18μm)略大于糯性糜子淀粉(6.04μm),與蕎麥淀粉(7.02μm)相近,顯著小于玉米(12.15μm)、馬鈴薯(33.67μm)淀粉。糜子淀粉的結(jié)晶構(gòu)型為a型,與蕎麥、玉米淀粉相似,但其衍射強(qiáng)度和結(jié)晶度存在一定的差異,在2θ角為15°、17°、18°、23°處,粳性糜子品種淀粉的平均衍射強(qiáng)度(377.5、395.5、422.5、338.5cps)和糯性糜子品種的相似(391.5、461.0、471.0、384.0cps),均低于蕎麥(461.0、570.0、576.0、514.5cps)及玉米(435.0、538.0、554.0、485.0cps)淀粉;而馬鈴薯淀粉的結(jié)晶構(gòu)型為b型。此外,各類參試淀粉在2θ角為20°處均出現(xiàn)了弱強(qiáng)度的衍射峰。參試粳性、糯性糜子淀粉的結(jié)晶度相似,分別為45.36%、45.21%,高于蕎麥(35.77%)、玉米(40.65%)及馬鈴薯(38.81%)淀粉。各類參試淀粉中直鏈淀粉含量的大小為:蕎麥(39.01%)粳糜(27.15%)玉米(23.95%)馬鈴薯(22.21%)糯糜(1.36%);透光率表現(xiàn)為:糯糜(31.50%)馬鈴薯(25.10%)粳糜(15.31%)玉米(14.60%)蕎麥(7.37%)。各類參試淀粉均在1次凍融之后出現(xiàn)了分層現(xiàn)象,其淀粉糊凍融析水率的大小依次為:粳糜(47.49%)蕎麥(47.46%)玉米(23.31%)糯糜(20.21%)馬鈴薯(8.39%)。各類參試淀粉的溶解度與膨脹度隨著溫度的升高而增大,90℃時(shí),各類參試淀粉的溶解度與膨脹度的大小順序一致,均為馬鈴薯(47.04%、59.98%)糯糜(34.42%、18.46%)粳糜(25.54%、12.22%)玉米(11.53%、11.67%)蕎麥(11.00%、10.88%);其峰值黏度、破損值和回生值的排序分別為:馬鈴薯(6.463 Pa·s)糯糜(3.356 Pa·s)玉米(2.059 Pa·s)苦蕎(2.121 Pa·s)粳糜(2.033 Pa·s)甜蕎(1.685 Pa·s)、馬鈴薯(2.123 Pa·s)糯糜(0.975 Pa·s)苦蕎(0.825 Pa·s)粳糜(0.498 Pa·s)玉米(0.415 Pa·s)甜蕎(0.412 Pa·s)和馬鈴薯(2.435 Pa·s)玉米(1.176 Pa·s)粳糜(0.999 Pa·s)苦蕎(0.803 Pa·s)甜蕎(0.737 Pa·s)糯糜(0.542 Pa·s)?傮w而言,粳性糜子淀粉的熱糊穩(wěn)定性較好,適合用于制作加工過程中需高溫糊化的食品;而糯性糜子淀粉糊透明度較高,且凍融穩(wěn)定性及冷糊穩(wěn)定性較好,抗老化能力強(qiáng),峰值黏度大,易糊化,適合應(yīng)用于對產(chǎn)品透明度要求較高或冷凍制品的加工行業(yè)。
[Abstract]:Millet is an important grain crop in arid and semi-arid areas of China. It is rich in protein, starch, dietary fiber and a variety of trace elements. It is an important food source for food and food. It is favored by nutritionists and consumers. But because of its poor palatability and processing characteristics, it is not widely used. Starch is the main component of the grain of millet. Physical and chemical properties affect the processing and functional properties of millet. At present, the research on physicochemical properties of starch is rarely reported. Therefore, the study of physicochemical properties of starch in different genotypes of millet varieties and the selection of processing varieties suitable for market demand are important to increase the value added of the millet seed processing, promote the increase of farmers' income and the sustainable development of agriculture. In this study, the grain morphology, crystal structure, amylose content, transparency, freeze-thaw stability, condensability, solubility and expansion, gelatinization and enthalpy characteristics of the grain starch were systematically studied with 12 japonica millet varieties and 7 waxy millet varieties as materials. The regulation effect of the physicochemical properties and the comparison with buckwheat, corn and potato starch were carried out. The main conclusions were as follows: (1) the amylose content, transparency, freeze-thaw stability, condensability, solubility and dilatancy of Different Japonica rice varieties were significantly different from those of the gelatinization characteristics. The polygonal, polygonal shape or spherical shape, the polyhedron particle size is larger and the proportion is higher, there is no obvious difference between the varieties, some starch particles have a dent on the surface, the size of the grain size range is 3.76~12.02 m, the crystal configuration is A type. The percentage of the volume and the volume of the condensate were 8.01%~28.02%, 9.93%~18.03%, 32.43%~47.06% and 15.5%~18.03%, respectively, and the solubility and expansion of the 90 C were 11.87%~22.67%, 15.37%~21.46%, respectively, the peak viscosity, the damage value, the return value and the gelatinization temperature were 1.979~2.887 Pa. S respectively, and 0.491~0.827 Pa s. Among the japonica rice varieties, the 05-223 has the highest transparency, the best freeze thawing stability and the anticoagulant resistance, the maximum peak viscosity, the best stability of the cold paste, the strong aging resistance and easy to gelatinization. It is suitable for the processing and utilization of the beverage products and frozen food. (2) the amylose content, transparency and freezing thawing stability of different waxy chicooid varieties There are significant differences in nature, agglutination, gelatinization and enthalpy characteristics. Glutinous millet starch granules are polygonal or spherical, polygonal particles are larger and higher in proportion, and the angle is not very obvious. Some starch granules have a concave structure on the surface of starch granules, the size of grain size is 2.86~10.08 m, and the crystal configuration is A type. The powder content, the transmittance of starch paste, the freeze-thaw rate and the percentage of the condensate volume were 0.124%~1.391%, 26.47%~32.05%, 18.42%~26.94% and 9.78%~10.27%, respectively, the peak viscosity, the damaged value, the return value and the gelatinization temperature of the gelatinization index were 3.144~3.515 Pa s, 0.779~0.906 Pa s, 0.197~0.566 Pa. The range of initial temperature, peak temperature, end temperature and enthalpy value are 67.87~70.79, 74.57~75.94, 80.38~81.06 and 10.367~10.670 J/g.. The anticoagulant and hot paste stability of the 07-405 starch is best, and it is more suitable for food stabilization and high temperature food processing. (3) different raw materials. The agronomic traits, yield performance and starch physical and chemical properties of the species were significantly different from those of.10 varieties. The spike length, spike weight, 1000 grain weight and yield were not exactly the same in the 3 ecological areas. The most significant difference was the yield performance, and the Yulin area in Shaanxi (6488.0kg/hm2) was significantly higher than that of Yanan in Shaanxi (2764.0k G/hm2) and Shanxi Datong (3172.3kg/hm2) area, this may be related to the cultivation conditions in different ecological areas and the amount of precipitation and sunshine duration in the growth period of the millet. The starch granules in the 3 sample regions show irregular polygonal shape or sphere, the proportion of polyhedron particles is higher and the particles are larger, and the spherical particles are small and small. The surface of some starch granules is depressed by alkaline solution. The grain size of the starch granules in 3 ecological regions of Yulin, Shaanxi, Shaanxi, Yanan and Shanxi, respectively, are 3.54~12.02, 3.62~13.14, m and 3.10~12.06 mu m. The crystal structure is a type A, but the diffraction intensity of the starch of each millet variety is different. In Yulin, Shaanxi, Shaanxi, Yanan The amylose content of amylose was 8.01%~28.02%, 7.65%~25.70% and 8.81%~22.38%, respectively, 8.01%~28.02%, 7.65%~25.70% and 8.81%~22.38%, respectively, 9.93%~18.03%, 10.13%~16.40% and 10.17%~16.43%, respectively, the content of direct starch in 2.43%~47.07%, 39.44%~55.50% and 35.52%~45.83%., and the transmittance and freezing and thawing of the starch in 2.43%~47.07%, 39.44%~55.50% and 35.52%~45.83%., respectively. The overall average of the water rate in 3 selected areas from high to low were Yulin in Shaanxi (22.77%) Shaanxi Yanan (20.52%) Shanxi Datong (19.61%), Shaanxi Yulin (12.73%) Shaanxi Yanan (11.93%) Shanxi Datong (11.82%) and Yanan (46.89%) Shaanxi Yanan (39.02%). The average peak viscosity of starch gelatinization was tested. The high and low values of the damaged values were all in the 3 test areas: Shanxi Datong (0.874,1.072,1.326pa. S) Shaanxi Yanan (0.643,0.714,0.923pa. S) Shaanxi Yulin (2.437,2.881,0.864pa. S). In the 3 different ecological regions, the stability of starch freeze-thaw is the best, the peak viscosity is the highest, and the cold paste stability is solid 05-223, and the hot paste is stable. The best qualitative varieties were Mengjing 7. The physical and chemical properties of other varieties of starch were not completely consistent in different test areas. Variance analysis showed that the amylose content, freeze thawing stability and gelatinization characteristics of chyon starch were all affected by genotype, environment and genotype and environment interaction effect, and the transparency was only based on the basis. The influence of genotype and environment was not significant. (4) there were significant differences in amylose content, transparency, freeze thawing stability and gelatinization characteristics of amylose starch and buckwheat, corn and potato starch. The proportion is higher, similar to the buckwheat and corn starch granules, but different from the potato starch granules. The grain size of the japonica millet starch (7.18 mu m) is slightly larger than the waxy millet starch (6.04 mu m), similar to the buckwheat starch (7.02 mu m), significantly less than the corn (12.15 mu m), and the potato starch (33.67 mu m) starch. The powder is similar, but its diffraction intensity and crystallinity are different. At 2 theta angle of 15, 17, 18, 23 degrees, the average diffraction intensity (377.5395.5422.5338.5cps) of the japonica millet varieties and the waxy millet varieties (391.5461.0471.0384.0cps) are lower than that of buckwheat (461.0570.0576.0514.5cps) and corn (435.0538.0554.0). 485.0cps) starch; and the crystalline configuration of potato starch was B type B. In addition, the weak intensity diffraction peaks appeared at 2 theta 20 degrees. The crystallinity of the glutinous rice starch was similar to 45.36%, 45.21% respectively, which was higher than that of buckwheat (35.77%), jade (40.65%) and potato (38.81%) starch. The size of starch content is: buckwheat (39.01%) japonica (27.15%) corn (23.95%), potato (22.21%) waxy (1.36%), and the transmittance rate is: glutinous surimi (31.50%) potato (25.10%) japonica (15.31%) corn (15.31%) corn (14.60%) buckwheat (7.37%). The starch paste freeze-thaw rate is in turn as follows: the starch paste freeze-thaw rate is in turn: Japonica (47.49%) buckwheat (47.46%) corn (23.31%) waxy (20.21%) potato (8.39%). The solubility and expansion of all kinds of tested starch increased with the increase of temperature. At 90 C, the solubility of all kinds of starch was in the same order as the size of expansion degree, all of which were corn (34.42%, 18.46%) (25.54%, 12.22%) corn (34.42%, 18.46%)) of corn (1, 1, 59.98%). 1.53%, 11.67%) buckwheat (11%, 10.88%); the order of peak viscosity, breakage value and return value were: Potato (6.463 Pa. S) glutinous rice (3.356 Pa. S) corn (2.059 Pa. S) Tartary Buckwheat (2.121 Pa s) japonica (2.033 Pa s) sweet buckwheat (1.685 Pa s), Ma bell potato glutinous chyle 5 Pa. S) sweet buckwheat (0.412 Pa. S) and potato (2.435 Pa. S) corn (1.176 Pa s) japonica (0.999 Pa s) bitter buckwheat (0.803 Pa s) sweet buckwheat (0.737) sweet buckwheat glutinous surimi. Generally, the hot paste stability of the japonica millet starch is better, suitable for the preparation of high temperature gelatinized food during processing; and waxy chyle starch paste transparency is more than that. High stability and stability of freezing and thawing, good stability of cold paste, strong anti-aging ability, high peak viscosity, easy to paste, suitable for application in the processing industry with higher transparency requirements or frozen products.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S516
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范迎菊,陳艷麗;芋頭淀粉提取工藝及其性質(zhì)的研究[J];山東農(nóng)業(yè)科學(xué);2004年05期
2 木易;;淀粉回生影響因素及其利用[J];農(nóng)產(chǎn)品加工;2009年02期
3 馬紅彥,楊宜功;酶法鏈淀粉流變特性的研究[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2002年02期
4 韓文鳳;邱潑;孫慶杰;王晨光;;淀粉凝膠研究進(jìn)展[J];糧食與飼料工業(yè);2006年07期
5 白衛(wèi)東;王琴;李偉雄;;不同介質(zhì)條件對銀杏淀粉糊流變特性的影響[J];農(nóng)業(yè)工程學(xué)報(bào);2006年07期
6 劉延奇;吳史博;毛自薦;;固體核磁共振技術(shù)在淀粉研究中的應(yīng)用[J];農(nóng)產(chǎn)品加工(學(xué)刊);2008年07期
7 楊毅才;;淀粉糊化的過程及影響因素[J];農(nóng)產(chǎn)品加工;2009年02期
8 張二娟;何小維;吳磊;徐中岳;;緩慢消化淀粉的研究進(jìn)展[J];糧食與飼料工業(yè);2009年03期
9 江鎮(zhèn)海;;淀粉衍生產(chǎn)品在農(nóng)藥中的應(yīng)用[J];農(nóng)藥市場信息;2009年16期
10 袁美蘭;;淀粉結(jié)構(gòu)和性質(zhì)的研究概況[J];畜牧與飼料科學(xué);2011年01期
相關(guān)會(huì)議論文 前10條
1 劉鐘棟;郭云昌;安紅杰;王化斌;盧奎;路飛;李振興;胡鈞;;谷物淀粉糊化過程中形態(tài)變化的顯微研究[A];全國第七屆掃描隧道顯微學(xué)學(xué)術(shù)會(huì)議(STM'7)論文集(一)[C];2002年
2 陳雪;鄒鎖柱;曾榮妹;;酶法提高淀粉膜性能的研究[A];生命科學(xué)與微生物專輯[C];2004年
3 周燕;劉鐘棟;;淀粉磷酸酯在食品中的應(yīng)用[A];第七屆全國磷化學(xué)化工暨第四屆海峽化學(xué)生物學(xué)、生物技術(shù)與醫(yī)藥發(fā)展討論會(huì)論文集[C];2006年
4 陳佩;李遠(yuǎn)志;吳雪輝;肖楠;;激光共聚焦顯微鏡在淀粉結(jié)構(gòu)研究中的應(yīng)用[A];管產(chǎn)學(xué)研助推食品安全重慶高峰論壇——2011年中國農(nóng)業(yè)工程學(xué)會(huì)農(nóng)產(chǎn)品加工及貯藏工程分會(huì)學(xué)術(shù)年會(huì)暨全國食品科學(xué)與工程博士生學(xué)術(shù)論壇論文集[C];2011年
5 侯拴慶;王聞?dòng)?金欣;沙曉旭;謝淳;俞傳坤;;酸解對玉米淀粉糊及淀粉膜性能的影響[A];“力恒杯”第11屆功能性紡織品、納米技術(shù)應(yīng)用及低碳紡織研討會(huì)論文集[C];2011年
6 陳建慧;劉鐘棟;;高壓淀粉糊化——深水壓淀粉糊化的模擬(英文)[A];第十屆中國科協(xié)年會(huì)論文集(四)[C];2008年
7 文紅麗;蘇昕峰;陸紅佳;鄭龍輝;劉雄;;超聲波堿法提取純化薏苡淀粉的研究[A];管產(chǎn)學(xué)研助推食品安全重慶高峰論壇——2011年中國農(nóng)業(yè)工程學(xué)會(huì)農(nóng)產(chǎn)品加工及貯藏工程分會(huì)學(xué)術(shù)年會(huì)暨全國食品科學(xué)與工程博士生學(xué)術(shù)論壇論文集[C];2011年
8 李鐵栓;;雙磷酸淀粉及其在雙膠紙上應(yīng)用[A];中國造紙學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)資料集[C];1994年
9 孫峗;;高品質(zhì)馬鈴薯α淀粉的生產(chǎn)工藝試驗(yàn)研究[A];中國西部農(nóng)產(chǎn)品加工及產(chǎn)業(yè)化發(fā)展戰(zhàn)略研討會(huì)論文集[C];2001年
10 龔晴霞;涂克華;王利群;;淀粉-乳酸直接共縮聚產(chǎn)物的表征[A];第四屆全國高聚物分子表征學(xué)術(shù)討論會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前7條
1 國家糧油質(zhì)量監(jiān)督檢驗(yàn)中心常務(wù)副主任 尚艷娥;淀粉選購看顏色 保存防潮防異味[N];中國質(zhì)量報(bào);2003年
2 ;干紅薯生產(chǎn)淀粉[N];中國食品質(zhì)量報(bào);2009年
3 張宏 林向陽 朱榕璧 彭樹美;影響淀粉類制品加工特性的因素研究[N];中國食品質(zhì)量報(bào);2009年
4 張宏 林向陽 朱榕璧 彭樹美;影響淀粉類制品加工特性的因素研究[N];中國食品質(zhì)量報(bào);2009年
5 周友明 阮湘元 劉治猛;PVA改性瓦楞紙板淀粉膠的研制[N];中國包裝報(bào);2006年
6 應(yīng)城市農(nóng)業(yè)局 華連洪;甜面醬的制作[N];湖北科技報(bào);2002年
7 韓香云;開水煮飯營養(yǎng)不流失[N];科技日報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 常豐丹;顆粒態(tài)淀粉脂質(zhì)復(fù)合物的制備、理化性質(zhì)及其形成機(jī)理研究[D];華南理工大學(xué);2015年
2 寧婷婷;TMR 發(fā)酵過程中微生物及其酶對淀粉及半纖維素降解的作用機(jī)理研究[D];中國農(nóng)業(yè)大學(xué);2016年
3 晁桂梅;品種及栽培環(huán)境對糜子淀粉理化性質(zhì)影響研究[D];西北農(nóng)林科技大學(xué);2016年
4 田耀旗;淀粉回生及其控制研究[D];江南大學(xué);2011年
5 侯漢學(xué);不同來源淀粉的結(jié)構(gòu)與功能相關(guān)性及半干法陽離子化機(jī)理研究[D];山東農(nóng)業(yè)大學(xué);2007年
6 林鴛緣;蓮子淀粉糊特性的研究與應(yīng)用[D];福建農(nóng)林大學(xué);2011年
7 孫昌波;加工條件對蕨根淀粉理化及應(yīng)用特性的影響研究[D];中南林業(yè)科技大學(xué);2010年
8 劉延奇;酸酶催化水解對淀粉結(jié)晶結(jié)構(gòu)與性質(zhì)的影響研究[D];天津大學(xué);2004年
9 鐘連進(jìn);溫度對早秈稻米品質(zhì)影響的淀粉理化基礎(chǔ)與代謝特征研究[D];浙江大學(xué);2004年
10 劉海英;噴施6-BA和PP_(333)對小麥籽粒產(chǎn)量、淀粉形成與品質(zhì)的調(diào)控效應(yīng)研究[D];河南農(nóng)業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 徐亞峰;辛烯基琥珀酸淀粉酯的限制性水解及其穩(wěn)定乳液機(jī)理研究[D];華南理工大學(xué);2015年
2 劉軻;漢中豆薯成分分析及其開發(fā)利用研究[D];陜西理工學(xué)院;2015年
3 張哲學(xué);燕麥全籽粒擠壓工藝探究與優(yōu)化[D];陜西師范大學(xué);2015年
4 汪婕;錐栗淀粉變性及其主要性質(zhì)研究[D];長沙理工大學(xué);2014年
5 趙鵬;紅蕓豆淀粉提取及其抗老化研究[D];山西農(nóng)業(yè)大學(xué);2014年
6 張爽;刺山藥營養(yǎng)成分的提取及組分分析研究[D];天津科技大學(xué);2014年
7 胡貞;海南三種淮山加工特性及應(yīng)用研究[D];海南大學(xué);2013年
8 張?jiān)ポx;淀粉對面條品質(zhì)的影響研究[D];河南工業(yè)大學(xué);2015年
9 蔡金文;普通水稻淀粉結(jié)構(gòu)和功能特性研究[D];揚(yáng)州大學(xué);2015年
10 宋一諾;淀粉—脂肪酸復(fù)合物對小麥淀粉糊化和回生特性的影響[D];河南農(nóng)業(yè)大學(xué);2015年
,本文編號:1859716
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1859716.html