尾葉桉多世代育種群體的遺傳多樣性及其改良性狀的關(guān)聯(lián)分析
本文選題:尾葉桉育種群體 + 微衛(wèi)星標(biāo)記; 參考:《中國(guó)林業(yè)科學(xué)研究院》2017年博士論文
【摘要】:尾葉桉是我國(guó)最重要的桉樹(shù)改良樹(shù)種之一,長(zhǎng)期以來(lái)積累了豐富的尾葉桉優(yōu)良種質(zhì)資源。目前,我國(guó)的尾葉桉改良處于第三代改良階段。尾葉桉第二代育種群體的構(gòu)成材料是第一代育種群體中經(jīng)高強(qiáng)度人工選擇的自由授粉子代,第三代育種群體的構(gòu)成材料同樣經(jīng)歷高強(qiáng)度的人工選擇,主要為尾葉桉前兩個(gè)世代的自由授粉子代。因此,尾葉桉高世代育種群體的遺傳多樣性和遺傳結(jié)構(gòu)較之前的世代群體發(fā)生了很大的變化,但世代間的遺傳物質(zhì)又存在很大的繼承關(guān)系。所以,在計(jì)劃推進(jìn)尾葉桉進(jìn)入下一個(gè)世代的改良、選擇構(gòu)成下一代群體的遺傳材料之前,了解現(xiàn)有世代育種群體的遺傳多樣性和遺傳結(jié)構(gòu)顯得非常重要。本研究的主要內(nèi)容包括:(1)借助微衛(wèi)星標(biāo)記分別對(duì)尾葉桉三個(gè)世代育種群體的遺傳多樣性和遺傳結(jié)構(gòu)進(jìn)行分析,包括清楚了解第一代天然種源的遺傳多樣性水平和遺傳結(jié)構(gòu)特點(diǎn),重點(diǎn)對(duì)比三個(gè)世代育種群體遺傳多樣性的變化規(guī)律。(2)評(píng)估尾葉桉三個(gè)世代育種群體改良性狀的表型遺傳變異水平。探索近紅外光譜(NIRs)分析技術(shù)用于桉樹(shù)改良性狀快速預(yù)測(cè)的可行性。(3)挖掘與尾葉桉木材密度和生長(zhǎng)性狀顯著關(guān)聯(lián)的微衛(wèi)星位點(diǎn)。本研究的主要結(jié)論如下:(1)基于微衛(wèi)星的Hardy-Weinberg平衡檢測(cè)顯示,尾葉桉三代育種群體都表現(xiàn)出明顯的雜合子缺失現(xiàn)象,且均偏離遺傳平衡。(2)16個(gè)基因組微衛(wèi)星位點(diǎn)分別在三代尾葉桉育種群體中檢測(cè)到459、313和428個(gè)等位基因。Shannon信息指數(shù)(1.966、2.093和2.265)表明尾葉桉三代育種群體的遺傳多樣性較為一致。多態(tài)性信息含量(0.859、0.840和0.866)表明,三代尾葉桉育種群體具有高度多態(tài)性。期望雜合度(0.807、0.830和0.857)表明尾葉桉三代育種群體都具有很高的遺傳多樣性。(3)尾葉桉三個(gè)世代育種群體間的遺傳距離距離分別為0.450、0.238和0.249,遺傳一致度分別為0.645、0.788和0.781,遺傳分化系數(shù)分別為0.044、0.021和0.018,基因流分別為6.387、11.506和14.393。這些數(shù)據(jù)說(shuō)明,尾葉桉三代育種群體內(nèi)的遺傳分化水平很低且在逐代降低,群體內(nèi)的基因流在逐代增加。(4)分子方差分析結(jié)果顯示,尾葉桉三代育種群體的遺傳變異主要來(lái)自種源或亞群體間的所有個(gè)體間(接近70%),群體內(nèi)變異占30%以上,群體間的遺傳變異最小。尾葉桉第一代群體的Structure亞群體分類和UPGMA聚類分析結(jié)果基本一致,但尾葉桉天然種源間的聚類結(jié)果與其地理分布并不一致。(5)尾葉桉木材密度和生長(zhǎng)性狀的表型變異分析表明,尾葉桉三代育種群體目標(biāo)性狀在種源和亞群體間都存在顯著的遺傳變異(0.05)。尾葉桉三個(gè)世代育種群體的木材密度和生長(zhǎng)性狀的多重聚類分析顯示,從木材密度的差異來(lái)看,尾葉桉三代育種群體的表型分化相對(duì)較小,顯著性不高。三代育種群體基于生長(zhǎng)性狀的表型分化水平相對(duì)較高(0.05)。(6)基于最小二乘法(PLS)建立的桉樹(shù)木材密度、纖維長(zhǎng)度和纖維寬度的NIRs模型的測(cè)量值和預(yù)測(cè)值間的決定系數(shù)(R2)分別為0.93、0.94和0.92。測(cè)量值與預(yù)測(cè)值間的平均均方根誤差(RMSEC)分別為0.007、0.013和0.254。用獨(dú)立的驗(yàn)證集樣本對(duì)桉樹(shù)木材密度和纖維形態(tài)NIRs校正模型的預(yù)測(cè)檢驗(yàn)顯示,木材密度、纖維長(zhǎng)度和纖維寬度的NIRs模型的預(yù)測(cè)效果都很好。(7)關(guān)聯(lián)位點(diǎn)的表型變異解釋率(R2)顯示,基于群體T164(木材密度43.8%、胸徑67.6(一個(gè)位點(diǎn))、樹(shù)高40.1%)和群體T77(木材密度24.3%、胸徑40.5%、樹(shù)高55.4%(兩個(gè)位點(diǎn)))所得到的所有關(guān)聯(lián)位點(diǎn)的表型變異解釋率都比較高,說(shuō)明這些關(guān)聯(lián)位點(diǎn)對(duì)目標(biāo)性狀的控制程度比較高。(8)在兩個(gè)關(guān)聯(lián)群體中,基于同樣的微衛(wèi)星位點(diǎn)沒(méi)有發(fā)現(xiàn)同一個(gè)在兩個(gè)群體中同時(shí)與相同的性狀關(guān)聯(lián)的標(biāo)記。在兩個(gè)群體中,與尾葉桉木材密度關(guān)聯(lián)的位點(diǎn)數(shù)量都相對(duì)較多,與生長(zhǎng)性狀關(guān)聯(lián)的位點(diǎn)較少。在群體T164中,位點(diǎn)EUceSSR900同時(shí)與木材密度和樹(shù)高關(guān)聯(lián),位點(diǎn)EUceSSR425同時(shí)與尾葉桉木材密度和胸徑關(guān)聯(lián)。位點(diǎn)EUceSSR900在GLM模型和MLM模型的算法中被同時(shí)檢測(cè)到,這在很大程度上排除了其假陽(yáng)性的可能性。位點(diǎn)Embra100與木材密度的關(guān)聯(lián)程度達(dá)到了極顯著水平(P0.001),其對(duì)木材密度的表型變異解釋率為75.8%,遠(yuǎn)高于木材密度關(guān)聯(lián)位點(diǎn)的平均解釋率。在群體T77中,與尾葉桉木材密度和胸徑關(guān)聯(lián)的位點(diǎn)數(shù)量相當(dāng),與樹(shù)高關(guān)聯(lián)的位點(diǎn)有2個(gè)。
[Abstract]:Eucalyptus urophylla is one of the most important improved eucalyptus tree species in China. It has accumulated rich germplasm resources of Eucalyptus urophylla for a long time. At present, the improvement of Eucalyptus urophylla in China is in the third generation improvement stage. The composition of the second generation breeding population of Eucalyptus taurophylla is the free Pollination Progeny of the first generation breeding population by high intensity artificial selection, and the third generation. The genetic diversity and genetic structure of the high generation breeding population of Eucalyptus urophylla were greatly changed in comparison with those of the previous generations, but there was a great inheritance of genetic material between generations. It is very important to understand the genetic diversity and genetic structure of the existing generation breeding population before entering the next generation of genetic material in the next generation of Eucalyptus urophylla. The main contents of this study include: (1) the genetic diversity of the three generations of Eucalyptus urophylla populations by microsatellite markers, respectively. Analysis of the pattern and genetic structure, including a clear understanding of the genetic diversity and genetic structure of the first generation natural provenance, focusing on the variation of genetic diversity in the three generations of breeding populations. (2) to assess the level of the genetic variation of the modified traits in the Oba Mi breeding population and to explore the near infrared spectroscopy (NIRs) score. The feasibility of rapid prediction of the improved traits of Eucalyptus was analyzed. (3) mining the microsatellite loci significantly associated with the wood density and growth traits of Eucalyptus urophylla. The main conclusions of this study are as follows: (1) the Hardy-Weinberg balance detection based on microsatellites showed that the three generation breeding populations of Eucalyptus urophylla showed obvious heterozygote deletion. (2) 16 genomic microsatellite loci have detected 459313 and 428 alleles.Shannon information index (1.966,2.093 and 2.265) in three generation of Eucalyptus urophylla populations (1.966,2.093 and 2.265), indicating that the genetic diversity of the three generation of Eucalyptus taurophylla is more consistent. Polymorphism information content (0.859,0.840 and 0.866) indicates that the three generation of Eucalyptus The expected heterozygosity (0.807,0.830 and 0.857) showed that the three generation breeding population of Eucalyptus taurophylla had high genetic diversity. (3) the genetic distance distance between three generations of Eucalyptus urophylla was 0.645,0.788 and 0.249 respectively, the genetic consistency was 0.645,0.788 and 0.781, and the genetic differentiation coefficient was 0.044, respectively. 0.021 and 0.018, the gene flow is 6.387,11.506 and 14.393., respectively. The genetic differentiation level in the three generation breeding population of Eucalyptus taurophylla is very low, and the gene flow in the population increases in generation by generation. (4) the results of the molecular variance analysis show that the genetic variation of the Oba Mi generation population is mainly from the provenance or subpopulation. Among all the individuals (close to 70%), the variation in the population was over 30% and the genetic variation among the groups was the smallest. The results of the Structure subgroup and the UPGMA cluster analysis of the first generation of Eucalyptus urophylla were basically the same, but the results of the cluster between the natural species of Eucalyptus urophylla and its geographical distribution were different. (5) the wood density and the phenotype of the growth traits of Eucalyptus urophylla. The variation analysis showed that there were significant genetic variations between the seed and subpopulations of the three generation breeding population of Eucalyptus urophylla (0.05). The multiple cluster analysis of wood density and growth traits of three generations of Eucalyptus urophylla showed that the phenotypic differentiation of the three generation breeding population of Eucalyptus urophylla was relatively small. The level of phenotypic differentiation based on growth traits of the three generation breeding population is relatively high (0.05). (6) the determining coefficient (R2) between the measured values and the predicted values of the NIRs model of Eucalyptus wood, fiber length and fiber width (R2) based on the least square method (R2) is divided into the average mean square between the 0.93,0.94 and 0.92. measured values and the predicted values. The root error (RMSEC) for 0.007,0.013 and 0.254. used independent validation set samples to predict the density of Eucalyptus wood and the NIRs correction model of fiber morphology. The prediction results of NIRs model of wood density, fiber length and fiber width were all good. (7) the phenotypic variation interpretation rate of association sites (R2) was based on population T164 (wood). Density 43.8%, DBH 67.6 (one site), tree height 40.1%) and population T77 (wood density 24.3%, DBH 40.5%, tree height 55.4% (two loci)) have high phenotypic variation in all associated loci, indicating that these associated sites have higher control over target traits. (8) in two related groups, based on the same microsatellite. In the two population, the number of loci associated with the wood density of Eucalyptus urophylla is relatively more, and the loci associated with the growth traits are less. In population T164, the site EUceSSR900 is associated with wood density and tree height, and the site EUceSSR425 is at the same time. The association with wood density and DBH of Eucalyptus urophylla. Site EUceSSR900 was detected at the same time in the GLM model and the MLM model algorithm, which largely eliminated the possibility of false positive. The correlation between the site Embra100 and the wood density reached a very significant level (P0.001), and the interpretation rate of phenotypic variation to wood density was 75.8%, far from that of wood density. In population T77, the number of loci associated with the wood density and DBH of Eucalyptus urophylla is equal, and there are 2 loci associated with tree height.
【學(xué)位授予單位】:中國(guó)林業(yè)科學(xué)研究院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:S792.39
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊漢波;張蕊;周志春;;木荷種子園的遺傳多樣性和交配系統(tǒng)[J];林業(yè)科學(xué);2016年12期
2 王玲;左示敏;張亞芳;陳宗祥;潘學(xué)彪;黃世文;;四川省稻瘟病菌群體遺傳結(jié)構(gòu)分析[J];中國(guó)水稻科學(xué);2015年03期
3 于大德;袁定昌;張登榮;范英明;李旦;張鴻景;張金鳳;;華北落葉松種子園不同世代間遺傳多樣性變化[J];植物遺傳資源學(xué)報(bào);2014年05期
4 范虎;文自翔;王春娥;王芳;邢光南;趙團(tuán)結(jié);蓋鈞鎰;;中國(guó)野生大豆群體農(nóng)藝加工性狀與SSR關(guān)聯(lián)分析和特異材料的遺傳構(gòu)成[J];作物學(xué)報(bào);2013年05期
5 萬(wàn)志兵;戴曉港;尹佟明;;林木遺傳育種基礎(chǔ)研究熱點(diǎn)述評(píng)[J];林業(yè)科學(xué);2012年02期
6 文自翔;趙團(tuán)結(jié);鄭永戰(zhàn);劉順湖;王春娥;王芳;蓋鈞鎰;;中國(guó)栽培和野生大豆農(nóng)藝及品質(zhì)性狀與SSR標(biāo)記的關(guān)聯(lián)分析Ⅱ.優(yōu)異等位變異的發(fā)掘[J];作物學(xué)報(bào);2008年08期
7 文自翔;趙團(tuán)結(jié);鄭永戰(zhàn);劉順湖;王春娥;王芳;蓋鈞鎰;;中國(guó)栽培和野生大豆農(nóng)藝品質(zhì)性狀與SSR標(biāo)記的關(guān)聯(lián)分析 I.群體結(jié)構(gòu)及關(guān)聯(lián)標(biāo)記[J];作物學(xué)報(bào);2008年07期
8 王玉榮;費(fèi)本華;傅峰;江澤慧;覃道春;楊忠;;基于近紅外光譜技術(shù)預(yù)測(cè)木材纖維長(zhǎng)度[J];中國(guó)造紙;2008年06期
9 王榮煥;王天宇;黎裕;;植物基因組中的連鎖不平衡[J];遺傳;2007年11期
10 崔繼哲,祖元?jiǎng)?聶江力,王桂玲;松嫩草原羊草種群遺傳分化的研究[J];植物研究;2001年01期
相關(guān)碩士學(xué)位論文 前2條
1 崔廣;基于近紅外光譜分析的紡織品中羊毛含量檢測(cè)技術(shù)研究[D];江蘇大學(xué);2007年
2 艾暢;馬尾松無(wú)性系種子園遺傳多樣性及其自由授粉子代父本組成研究[D];南京林業(yè)大學(xué);2004年
,本文編號(hào):1877377
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1877377.html