苯基吡唑類手性農(nóng)藥及代謝物在水環(huán)境中的立體選擇性行為及污染修復(fù)研究
本文選題:手性農(nóng)藥 + 氟蟲腈; 參考:《中國(guó)農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:隨著社會(huì)的進(jìn)步,農(nóng)藥的使用量也在逐年增多,據(jù)調(diào)查,手性農(nóng)藥的使用量在各種農(nóng)藥中大約占據(jù)了30%的份額。由于手性農(nóng)藥的不同對(duì)映體在生物體內(nèi)存在明顯的差別,從而導(dǎo)致被使用過(guò)的生物在各方面呈現(xiàn)出不同的特征,從而為環(huán)境毒理學(xué)的發(fā)展提供了依據(jù)。丁蟲腈(flufiprole)作為使用時(shí)間較短的殺蟲劑,其現(xiàn)在在社會(huì)上仍占據(jù)很大的市場(chǎng)。其目前主要是在外消旋體的基礎(chǔ)上生產(chǎn)的。目前,就非靶標(biāo)生物在對(duì)映體水平上的毒理與環(huán)境風(fēng)險(xiǎn)知之甚少。氟蟲腈(fipronil)是90年代使用的一種殺蟲劑,因其對(duì)水生生物具有較高的毒性,盡管這種殺蟲劑已經(jīng)停用,但是如果進(jìn)行檢測(cè),在我們生活的環(huán)境中及生物體中依然可以找到其痕跡,因此,其潛伏期很長(zhǎng),特別是它在水中的代謝物對(duì)于水生態(tài)系統(tǒng)是個(gè)巨大的威脅。就目前而言,加強(qiáng)對(duì)手性農(nóng)藥的研究力度,由于其較強(qiáng)的毒性,盡可能在有限的范圍內(nèi)減少手性農(nóng)藥對(duì)于生態(tài)系統(tǒng)的破壞,確保生態(tài)系統(tǒng)的安全,這一研究課題在當(dāng)下意義重大。本論文對(duì)丁蟲腈、氟蟲腈在水生生物體內(nèi)的選擇性富集、在生物體內(nèi)各種循環(huán)等做了詳細(xì)的調(diào)查;并深入探索環(huán)糊精對(duì)以上兩種殺蟲劑的影響。通過(guò)高效液相色譜手性固定相法,利用(R, R) Whelk-0 1型手性色譜柱、CHIRALCEL OD-H手性色譜柱、CHIRALPAK IB手性色譜柱對(duì)氟蟲腈的兩種手性代謝物(RPA200766和MB200761)進(jìn)行了系統(tǒng)的拆分研究,優(yōu)化了色譜分離條件,考察了熱力學(xué)參數(shù),探討了手性識(shí)別機(jī)理。結(jié)果表明,兩種代謝物對(duì)映體在優(yōu)化的色譜條件下均可實(shí)現(xiàn)基線分離。研究丁蟲腈、氟蟲腈外消旋體及其代謝物(氟甲腈、硫化物、砜化物)對(duì)常見的幾種代表性的水生生物(淡水藻、浮萍、河蚌、泥鰍)的立體選擇性毒性。試驗(yàn)結(jié)果發(fā)現(xiàn),丁蟲腈和氟蟲腈的R體的單體對(duì)幾種水生植物的毒性要大于S體,與此相反的是,在水生動(dòng)物的毒性測(cè)試中發(fā)現(xiàn),S體的毒性要大。同時(shí),三種代謝物的毒性都要高于母體化合物。建立了沉積物-水,沉積物-水-浮萍-河蚌的模擬水生態(tài)系統(tǒng)。研究結(jié)果發(fā)現(xiàn),在沉積物-水中,整個(gè)暴露過(guò)程,水中大約70%的氟蟲腈發(fā)生降解,半衰期為8.8天,EF值從0.49下降到0.44,有輕微的選擇性行為。暴露初期16天,沉積物中的氟蟲腈含量逐漸升高,最高濃度達(dá)到86.5 ng/g,隨后濃度逐漸下降到53.3 ng/g.EF值從0.5下降0.38,說(shuō)明沉積物中的微生物優(yōu)先降解R體丁蟲腈。同時(shí)也檢測(cè)到氟蟲腈的產(chǎn)生。第16天,fipronil在水中濃度達(dá)到最高為35.6ug/L,檢測(cè)發(fā)現(xiàn),氟蟲腈EF值從0.5下降到0.37,說(shuō)明代謝物S-氟蟲腈優(yōu)先生成且主要由沉積物中的微生物產(chǎn)生并逐漸釋放到水中。在滅菌沉積物-水中,在90天的時(shí)間里,水中丁蟲腈的含量只下降40%,同時(shí)只有少量的氟蟲腈檢出。與不滅菌不同的是,在滅菌沉積物中丁蟲腈擴(kuò)散到沉積物中在第11天達(dá)到峰值(132ng/g),隨著時(shí)間的增長(zhǎng),氟蟲腈的濃度沒(méi)有明顯下降,說(shuō)明沉積物中的微生物在降解丁蟲腈產(chǎn)生氟蟲腈的過(guò)程中有重要的作用。同時(shí),氟蟲腈的檢出要明顯低于不滅菌的體系(4.6 ng/g),而且在水中和沉積物, 丁蟲腈和氟蟲腈EF值沒(méi)有明顯的偏離0.5,說(shuō)明在滅菌條件下兩個(gè)外消旋化合物沒(méi)有明顯的選擇性發(fā)生。在沉積物-水中,整個(gè)暴露過(guò)程,水中大約60%的氟蟲腈發(fā)生降解,半衰期為11.8天,暴露初期16天,沉積物中的氟蟲腈含量逐漸升高,最高濃度達(dá)到86.5 ng/g,隨后濃度逐漸下降到36.8 ng/g.同時(shí)也檢測(cè)了三個(gè)主要的代謝物。第16天,sulfide在水中濃度達(dá)到最高為5.6ug/L,高于sulfone(11天4.9ug/L)和desulfinyl (7天3.2ug/L),大約在60天左右低于檢出限。檢測(cè)發(fā)現(xiàn),代謝物在沉積物中濃度11天達(dá)到峰值分別為sulfide (7.5ng/g), sulfone (3.3ng/g), desulfinyl (5ng/g),說(shuō)明代謝物主要由沉積物中的微生物產(chǎn)生并逐漸釋放到水中。在滅菌沉積物-水中,在90天的時(shí)間里,水中氟蟲腈的含量只下降32%,同時(shí)只有少量的desulfinyl檢出。與不滅菌不同的是,在滅菌體系中氟蟲腈擴(kuò)散到沉積物中在第11天達(dá)到峰值(143ng/g),但隨著時(shí)間的增長(zhǎng),氟蟲腈的濃度沒(méi)有顯著地下降,說(shuō)明沉積物中的微生物在降解氟蟲腈的過(guò)程中有重要的作用。研究了氟蟲腈及其代謝物在人工模擬水生態(tài)系統(tǒng)中的影響發(fā)現(xiàn):氟蟲腈在沉積物、浮萍、河蚌中存在立體選擇性,在河蚌中主要是以S體形式存在,在浮萍和沉積物中主要以R體形式存在。產(chǎn)生可能的原因是兩個(gè)異構(gòu)體在河蚌中會(huì)發(fā)生單向轉(zhuǎn)化,R-氟蟲腈部分轉(zhuǎn)化為S-氟蟲腈,但S-氟蟲腈不會(huì)轉(zhuǎn)化為R-氟蟲腈。運(yùn)用手性毛細(xì)管氣相色譜柱結(jié)合GC-ECD,考察了氟蟲腈對(duì)映體及單體在河蚌、泥鰍體內(nèi)的立體選擇性富集和代謝行為。主要結(jié)論如下:氟蟲腈在河蚌和泥鰍體內(nèi)富集迅速,之后進(jìn)入濃度逐漸降低并伴隨重吸收的過(guò)程;氟蟲腈在河蚌和泥鰍身體里經(jīng)過(guò)一段時(shí)間的新陳代謝,呈現(xiàn)衰退的時(shí)間為四到八天;氟蟲腈在映體的選擇上主要體現(xiàn)在富集與循環(huán)的過(guò)程上。R體優(yōu)先降解,通過(guò)單體試驗(yàn)發(fā)現(xiàn),其可能的原因是由于酶的作用,是R體優(yōu)先降解或單項(xiàng)轉(zhuǎn)化成為S體氟蟲腈最后,使用生物炭作為水中丁蟲腈、氟蟲腈的污染修復(fù)材料,對(duì)丁蟲腈、氟蟲腈在不同條件下的吸附效率進(jìn)行了詳細(xì)的試驗(yàn),同時(shí)在添加生物炭的情況下測(cè)定了丁蟲腈、氟蟲腈及其代謝物對(duì)泥鰍的毒性。試驗(yàn)分別設(shè)定不同濃度,溫度,pH,測(cè)定生物炭對(duì)丁蟲腈、氟蟲腈的吸附效率,考察生物炭運(yùn)用到水中污染修復(fù)的可能性,從結(jié)果可以看出,pH和溫度對(duì)生物炭吸附水中丁蟲腈、氟蟲腈的影響最大。即在酸性和較高溫度條件下生物炭對(duì)丁蟲腈和氟蟲腈的消除效果最理想:試驗(yàn)在添加生物炭的情況下,測(cè)定了丁蟲腈、氟蟲腈及其代謝物對(duì)泥鰍的急性毒性。試驗(yàn)結(jié)果發(fā)現(xiàn),生物炭的加入不僅降低了水中污染物的濃度,降低生物對(duì)水中污染的生物利用率,同時(shí)還降低了污染物對(duì)泥鰍的毒性。為修復(fù)水環(huán)境中兩種農(nóng)藥及代謝物的污染提供理論依據(jù)。
[Abstract]:With the progress of society, the use of pesticides is increasing year by year. According to the investigation, the use of chiral pesticides occupies about 30% of all kinds of pesticides. Because the different enantiomers of chiral pesticides have obvious differences in living organisms, which leads to the different characteristics of the used organisms in all aspects, thus the environment is the environment. The development of toxicology provides a basis. Flufiprole, which is used as a shorter time insecticide, is still occupying a large market in society. It is now mainly produced on the basis of raceme. At present, little is known about the toxic and environmental risks of non target organisms at enantiomers. Fluonitrile (fipronil) is 9 An insecticide used in 0s, because of its high toxicity to aquatic organisms, although the insecticide has been disused, can be found in our living environment and living organisms, so it has a long latent period, especially its metabolites in the water are huge for the water ecosystem. At present, it is of great significance to strengthen the research on adversary pesticide, because of its strong toxicity, reducing the destruction of chiral pesticides to the ecosystem as much as possible and ensuring the safety of the ecosystem as much as possible. This thesis is of great significance at the moment. The effects of cyclodextrin on the two kinds of insecticides were investigated in detail, and the effects of cyclodextrin on the above two insecticides were explored. By HPLC, the two chiral metabolites (RPA200766) of fluonitrile (RPA200766) were used (R, R) Whelk-0 1 chiral chromatographic columns, CHIRALCEL OD-H chiral chromatographic columns and CHIRALPAK IB chiral chromatographic columns. The separation of the chromatographic separation conditions was optimized, the thermodynamic parameters were investigated, and the chiral recognition mechanism was discussed. The results showed that the two metabolites could be separated at baseline under the optimized chromatographic conditions. The study of nitrile, fluonitrile racemates and their metabolites (fluoromethonitrile, sulfides and sulfides) of the two metabolite enantiomers could be achieved. The stereoselective toxicity of several typical representative aquatic organisms (freshwater algae, duckweed, mussels, loach). The results showed that the toxicity of the R body of butylene and fluonitrile to several aquatic plants was greater than that of the S body. On the contrary, the toxicity test of the aquatic animals was found that the toxicity of the S body was large. At the same time, three metabolites were found. The results showed that about 70% of the fluonitrile in the water was degraded, the half-life was 8.8 days, the EF value decreased from 0.49 to 0.44, and there was a slight selective behavior. 16 of the initial exposure. The content of fluonitrile in the sediments increased gradually, the highest concentration reached 86.5 ng/g, and the subsequent concentration decreased to 53.3 ng/g.EF from 0.5 to 0.38, indicating that microbes in the sediments were preferred to degrade butylene nitrile. At the same time, the production of fluonitrile was also detected. Sixteenth days, the highest concentration of Fipronil in water was 35.6ug/L, detection, fluorine, and fluorine. The EF value of the nitrile decreased from 0.5 to 0.37, indicating that the metabolite, S- fluonitrile, was produced mainly by microbes in the sediments and gradually released into the water. In the sterilized sediments water, the content of butylitrile in water decreased only by 40% in 90 days, while only a small amount of fluonitrile was detected. The concentration of butylene nitrile in the sediment reached its peak in eleventh days (132ng/g). The concentration of fluonitrile did not decrease with time, indicating that the microorganisms in the sediments played an important role in the degradation of fluonitrile by butylene nitrile. At the same time, the detection of fluonitrile was significantly lower than that of the non sterilized system (4.6 ng/g). In water and sediments, the EF value of butibuitrile and fluonitrile did not significantly deviate from 0.5, indicating that the two racemes had no obvious selectivity under sterilization conditions. In the sediment water, about 60% of the fluonitrile in the water was degraded, the half-life was 11.8 days, and the fluonitrile in the sediments was contained in the sediments, and the fluonitrile contained in the sediments. The maximum concentration was up to 86.5 ng/g, the subsequent concentration decreased to 36.8 ng/g. and three major metabolites were also detected. Sixteenth days, the maximum concentration of sulfide in water was 5.6ug/L, higher than sulfone (11 days 4.9ug/L) and desulfinyl (7 day 3.2ug/L), which was about 60 days lower than the detection limit. The concentration of the product reached a peak of 11 days at sulfide (7.5ng/g), sulfone (3.3ng/g) and desulfinyl (5ng/g), indicating that the metabolites were mainly produced by microbes in the sediments and gradually released into the water. In the sterilized sediments water, the content of fluonitrile in water decreased only by 32% in 90 days, while only a small amount of desulfinyl was detected. In the sterilizing system, fluonitrile diffused into the sediments to reach a peak in eleventh days (143ng/g), but the concentration of fluonitrile did not decrease significantly over time, indicating that microbes in the sediments played an important role in the process of degrading fluonitrile. The study of fluonitrile and its metabolites in artificial simulation The effects of water ecosystem found that fluonitrile is stereoselective in sediments, duckweed, and mussels, mainly in the form of S body in mussels, and mainly in the form of R in duckweed and sediments. The possible reason is that two isomers can be converted into one direction in mussels, and R- fluonitrile is converted to S- fluonitrile. However, S- fluonitrile will not be converted to R- fluonitrile. Using chiral capillary gas chromatography column combined with GC-ECD, the stereoselective enrichment and metabolic behavior of fluonitrile enantiomers and monomers in mussels and loach were investigated. The main conclusions are as follows: fluonitrile is enriched in mussels and loach, and then the concentration is gradually reduced and accompanied by weight. The process of absorption; fluonitrile in the body of mussels and loach after a period of metabolism, showing a decline of four to eight days; the selection of fluonitrile enantiomers mainly reflected in the process of enrichment and circulation of.R body degradation, through the monomer test found that the possible reason for the effect of the enzyme, is the R body priority The solution or single item was converted into S body fluonitrile, and the biological charcoal was used as the pollution repair material of butylene nitrile and fluonitrile in water. The adsorption efficiency of butylene nitrile and fluonitrile under different conditions was tested in detail. At the same time, the toxicity of butafonitrile, fluonitrile and its metabolites to the loach were measured under the addition of biological carbon. Do not set different concentrations, temperature, pH, determine the adsorption efficiency of butachonitrile and fluonitrile by biological carbon, and investigate the possibility of biological charcoal used to repair the pollution in water. From the results, it can be seen that pH and temperature have the greatest influence on the adsorption of butachitrile and fluonitrile in water by biological carbon. The effect of nitrile removal is ideal: in the case of adding biological charcoal, the acute toxicity of butylene nitrile, fluonitrile and its metabolites to the loach was measured. The results showed that the addition of biochar not only reduced the concentration of pollutants in water, reduced the biological utilization rate of biological pollution to water, but also reduced the contamination of the loach. It provides a theoretical basis for restoring the pollution of two pesticides and metabolites in water environment.
【學(xué)位授予單位】:中國(guó)農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:X592
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱國(guó)念,吳金濤,劉乾開,孫錦荷;氟蟲腈在模擬稻田生態(tài)系中降解途徑的研究[J];農(nóng)藥學(xué)學(xué)報(bào);2000年02期
2 朱金文;魏方林;李少南;張自強(qiáng);朱國(guó)念;;氟蟲腈對(duì)家蠶的急性毒性與安全評(píng)價(jià)研究[J];農(nóng)藥學(xué)學(xué)報(bào);2006年01期
3 ;氟蟲腈7月1日起全國(guó)停用[J];農(nóng)藥研究與應(yīng)用;2009年01期
4 榮杰峰;韋航;李亦軍;黃伙水;黃煒娟;;食品中氟蟲腈殘留量的檢測(cè)方法研究進(jìn)展[J];廣州化工;2013年08期
5 馮正娣,吳和生,周群喜,王泉章,韓鶴樹,姜鳳玲;氟蟲腈防治菜白蝶試驗(yàn)[J];農(nóng)藥;1997年04期
6 黎金嘉;;研究氟蟲腈該出手時(shí)就出手[J];農(nóng)藥市場(chǎng)信息;2004年14期
7 李曉濤;黃青春;唐振華;;氟蟲腈對(duì)二化螟生長(zhǎng)發(fā)育的影響及對(duì)解毒酶的誘導(dǎo)效應(yīng)[J];農(nóng)藥學(xué)學(xué)報(bào);2006年03期
8 劉剛;;氟蟲腈首次獲批登記用于玉米種衣劑[J];農(nóng)藥市場(chǎng)信息;2011年09期
9 李德亮;宋高鵬;盧夢(mèng)玲;徐漢虹;;氟蟲腈衍生物-糖基偶合物的合成及其在蓖麻韌皮部的輸導(dǎo)性研究[J];農(nóng)藥學(xué)學(xué)報(bào);2011年05期
10 王莉,張少軍,錢訓(xùn),陳勇達(dá),默濤;氟蟲腈在水稻上的安全使用研究[J];河北農(nóng)業(yè)科學(xué);2004年02期
相關(guān)會(huì)議論文 前4條
1 徐萌;仇雁翎;朱志良;程炳宏;趙建夫;;水中氟蟲腈的光解研究[A];第六屆全國(guó)環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
2 黃家章;劉新剛;董豐收;鄭永權(quán);王艷艷;姚建仁;;氟蟲腈在水稻土和紅壤中的淋溶研究[A];第三屆全國(guó)農(nóng)業(yè)環(huán)境科學(xué)學(xué)術(shù)研討會(huì)論文集[C];2009年
3 陳經(jīng)定;范仰東;莫小平;;Bt與氟蟲腈混用防治水稻二化螟的效果與技術(shù)[A];植物保護(hù)與農(nóng)產(chǎn)品質(zhì)量安全論文集[C];2008年
4 施艷紅;花日茂;吳祥為;操海群;湯鋒;岳永德;;氟蟲腈在環(huán)境中的降解、轉(zhuǎn)歸及其生態(tài)影響[A];食品安全的理論與實(shí)踐——安徽食品安全博士科技論壇論文集[C];2005年
相關(guān)重要報(bào)紙文章 前8條
1 滄州市滄縣農(nóng)業(yè)局 張明軍邋張巧麗;氟蟲腈防治甲口蟲害效果好[N];河北農(nóng)民報(bào);2007年
2 顧旭東;氟蟲腈被禁,水稻殺蟲劑市場(chǎng)局面將改寫[N];江蘇農(nóng)業(yè)科技報(bào);2009年
3 記者 王兆勇 王愛娥;氟蟲腈“卷土重來(lái)”?[N];農(nóng)資導(dǎo)報(bào);2011年
4 洪民;16%毒死蜱·氟蟲腈乳油[N];江蘇農(nóng)業(yè)科技報(bào);2008年
5 李焱;美撤消注冊(cè)三種含氟蟲腈殺蟲劑產(chǎn)品[N];國(guó)際商報(bào);2004年
6 江蘇連云港立本農(nóng)藥化工有限公司營(yíng)銷副總經(jīng)理 鐘決龍;生產(chǎn)應(yīng)用前景看好 產(chǎn)能過(guò)剩隱患存在[N];農(nóng)資導(dǎo)報(bào);2008年
7 ;農(nóng)業(yè)部推薦高毒有機(jī)磷農(nóng)藥替代品[N];農(nóng)民日?qǐng)?bào);2006年
8 侯立功;抓住關(guān)鍵 適時(shí)防治[N];山西科技報(bào);2003年
相關(guān)博士學(xué)位論文 前3條
1 張博;魚類GABA受體與相關(guān)藥物作用機(jī)理研究及其純化分離[D];貴州大學(xué);2015年
2 萬(wàn)品俊;亞致死劑量氟蟲腈影響馬鈴薯甲蟲(Leptinotarsa decemlineata)化蛹的機(jī)制[D];南京農(nóng)業(yè)大學(xué);2014年
3 瞿涵;苯基吡唑類手性農(nóng)藥及代謝物在水環(huán)境中的立體選擇性行為及污染修復(fù)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 季明;氟蟲腈在水體中的光化學(xué)降解研究[D];安徽農(nóng)業(yè)大學(xué);2006年
2 王耀洲;灰飛虱對(duì)氟蟲腈抗性機(jī)理的初步研究[D];南京農(nóng)業(yè)大學(xué);2009年
3 董健;氟蟲腈免疫分析研究[D];南京農(nóng)業(yè)大學(xué);2001年
4 占繡萍;毒死蜱、氟蟲腈在薏苡仁和環(huán)境中的殘留和降解動(dòng)態(tài)研究[D];浙江大學(xué);2007年
5 黃家章;氟蟲腈在土壤中的吸附、淋溶以及降解特性研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2005年
6 吳長(zhǎng)興;毒死蜱和氟蟲腈的環(huán)境毒理與風(fēng)險(xiǎn)[D];浙江大學(xué);2010年
7 陳宇;灰飛虱對(duì)氟蟲腈的抗性機(jī)制研究[D];南京農(nóng)業(yè)大學(xué);2012年
8 郭敏;氟蟲腈在環(huán)境中的降解特性與降解機(jī)制研究[D];南京農(nóng)業(yè)大學(xué);2008年
9 趙孝寧;氟蟲腈在水稻上的殘留動(dòng)態(tài)及降解菌的篩選[D];安徽農(nóng)業(yè)大學(xué);2009年
10 李超;小菜蛾對(duì)氟蟲腈的抗性遺傳方式、交互抗性及抗性機(jī)理[D];南京農(nóng)業(yè)大學(xué);2007年
,本文編號(hào):1905477
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1905477.html