小麥抗紋枯病QTL的抗性因素研究
本文選題:小麥紋枯病 + 數(shù)量抗病性 ; 參考:《中國農(nóng)業(yè)大學》2017年博士論文
【摘要】:普通小麥(Triticum aesrivum L.)(下文簡稱小麥)在糧食安全中占有重要地位,由禾谷絲核菌(Rhizoctonia cerealis)所引起的紋枯病對小麥生產(chǎn)構(gòu)成了嚴重威脅。例如,2015年我國小麥紋枯病流行面積將近1.4億畝,造成了大量產(chǎn)量損失。對于該病害的防治,培育并利用抗病品種可以減少化學殺菌劑的使用,是最經(jīng)濟有效、安全環(huán)保的措施。目前,國內(nèi)外在小麥種內(nèi)尚未發(fā)現(xiàn)對紋枯病免疫的基因,但是從中鑒定的一些小麥品種(例如,CI12633、山紅麥、Luke、AQ)其病情明顯低于其它品種,表現(xiàn)出數(shù)量抗性的特點,這是由數(shù)量抗性位點(QuantitativeTrait Loci,QTL)控制的數(shù)量抗病性。眾多研究表明,小麥抗病性位點的鑒定、克隆以及相關(guān)抗性因素研究對于后期的作物抗性育種實踐具有重要意義。本實驗室前期構(gòu)建了小麥品種Luke與AQ雜交組合的高世代(F10)重組自交系群體(Recombinant Inbred Line,RIL),并從中鑒定并發(fā)表了7個在不同試驗環(huán)境條件下穩(wěn)定表達的抗紋枯病QTL(QSe.cau-1AS、QSe.cau-2BS、QSe.cau-3BS、QSe.cau-4AL、QSe.cau-5DL、QSe.cau-6BL、QSe.cau-7BL)(Chenetal.2013)。在此基礎上,本文研究目的是,進一步探討這7個抗病QTL與植株形態(tài)性狀、莖稈木質(zhì)素含量、及2個防衛(wèi)反應基因的關(guān)系,從而明確這7個QTL的抗病原因,哪些抗性點具有非小種專化性或非菌株;远男┦峭ㄟ^誘導生理互作發(fā)揮抗性作用,從而更好地在育種實踐中利用它們的抗病性。為此,本研究進行了以下4個試驗:第一,在前期工作基礎上,進一步完善Luke ×AQ染色體DNA標記遺傳連鎖圖譜,將DNA標記數(shù)目增加到613個,RIL數(shù)目增加到266個,為小麥植株形態(tài)性狀QTL染色體定位提供了準確可靠的基因型數(shù)據(jù);第二,于田間種植上述266個RIL,觀測它們的植株形態(tài)性狀(共15個),得到了共兩個生長期的5次生物重復試驗的表現(xiàn)型數(shù)據(jù),基于表現(xiàn)型數(shù)據(jù)和遺傳圖譜的基因型數(shù)據(jù),進行了形態(tài)性狀QTL的染色體定位,并比較這些形態(tài)性狀QTL與上述7個抗紋枯病QTL之間的染色體位置關(guān)系,分析二者的遺傳相關(guān)性;第三,從934個高代RIL(F10)篩選得到了8個關(guān)鍵RIL,其中7個RIL各自只含有1個不同的抗紋枯病抗性位點,第8個RIL不含有任何紋枯病抗性位點,將上述8個RIL種植在不利于小麥紋枯病的發(fā)生且沒有發(fā)現(xiàn)該病發(fā)生的自然條件田間,于開花后取樣測定了植株莖稈組成型木質(zhì)素的含量,比較上述RIL組成型木質(zhì)素含量的差異,從而分析各個抗性位點與木質(zhì)素的關(guān)系;第四,于溫室種植上述8個RIL,在拔節(jié)期對其接種紋枯菌,接菌5天后取其植株基部莖段,采用qRT-PCR方法測定各個RIL的過氧化氫酶基因轉(zhuǎn)錄量和病程相關(guān)蛋白-1基因的轉(zhuǎn)錄量,分析上述7個抗性位點與這兩個防衛(wèi)基因表達的關(guān)系。主要得到了如下4個方面的結(jié)果:(1)在上述7個抗紋枯病QTL中,有3個位點(QSe.cau-1AS、QSe.cau-2BS、QSe.cau-6BL)與植株形態(tài)性狀相關(guān),可能并不直接抗病,而是通過控制植株形態(tài)特征,影響植株群體內(nèi)濕度等小氣候因素,不利于紋枯菌侵染蔓延,預期不存在小種;曰蚓陮;詥栴},具有更為持久的抗病性;(2)其中的1個抗性位點(QSe.cau-7BL)與莖稈組成型木質(zhì)素含量相關(guān),它可能是通過提高木質(zhì)素含量,從而提高莖桿機械強度發(fā)揮抗病作用,因此,預期也不存在小種;曰蚓陮;詥栴};(3)有3個抗性位點(QSe.cau-2BS、QSe.cau-3BS、QSe.cau-4AL)與過氧化氫酶基因轉(zhuǎn)錄量和病程相關(guān)蛋白-1基因轉(zhuǎn)錄量相關(guān),二者是植物抗病機制代表性標志物,因此,這3個抗紋枯病QTL可以作為進一步研究小麥抗紋枯病抗性機制的切入點或試驗材料;(4)還有1個位點(QSe.caau-5DL)與上述各個因素均無確定的相關(guān)性,需要進一步試驗研究其抗病原因。
[Abstract]:Common wheat (Triticum aesrivum L.) (hereinafter referred to as wheat) occupies an important position in grain security. The sheath blight caused by cereal nucleocacal fungus (Rhizoctonia cerealis) poses a serious threat to the production of wheat. For example, the epidemic area of Wheat Sheath Blight in China in 2015 will be nearly 140 million mu, resulting in a large amount of yield loss. The prevention, cultivation and use of resistant varieties can reduce the use of chemical fungicides, which is the most economical and effective, safe and environmental protection. At present, there are no genes in the wheat species immune to sheath blight, but some wheat varieties (such as CI12633, red wheat, Luke, AQ) identified in this field are obviously lower than other varieties, showing that the disease is obviously lower than that of other varieties. The characteristics of quantitative resistance, which are controlled by the quantitative resistance loci (QuantitativeTrait Loci, QTL), have shown that the identification, cloning and related resistance factors of wheat resistance loci are of great significance to the later crop resistance breeding practice. In the early stage of the laboratory, the wheat variety Luke and AQ were constructed. In the high generation (F10) of the high generation (Recombinant Inbred Line, RIL), 7 anti sheath blight QTL (QSe.cau-1AS, QSe.cau-2BS, QSe.cau-3BS, QSe.cau-4AL, QSe.cau-5DL, QSe.cau-6BL) in different experimental environment conditions were identified and published. The purpose is to further explore the relationship between the 7 disease resistant QTL and plant morphological characters, the content of stem lignin and the 2 defense response genes, so as to clarify the resistance causes of the 7 QTL, which resistance points have non small specific or non specific specificity, and which are to play resistance by inducing interplant interaction, and thus better in breeding. The following 4 experiments were carried out in this study. Firstly, on the basis of previous work, the Luke x AQ chromosome DNA marker linkage map was further perfected, and the number of DNA markers increased to 613, and the number of RIL increased to 266, which provided accurate and reliable for the chromosomal location of the morphological character of wheat plant morphological characters. Second, second, we planted 266 RIL in the field, observed their plant morphological characters (a total of 15), and obtained the expressive data of 5 biological repeated tests in two growth periods. Based on the genotypic data of the phenotype data and genetic map, the chromosomal location of the morphological character QTL was carried out and the morphological character QTL was compared. The relationship between the chromosomal location of the 7 anti sheath blight QTL and the genetic correlation between the two was analyzed. Third, 8 key RIL were obtained from 934 high generation RIL (F10), of which 7 RIL had 1 different resistance sites for resistance to sheath blight and eighth RIL did not contain any sheath blight resistance loci, and 8 RIL was planted in unfavorable conditions. The occurrence of Wheat Sheath blight was not found in the natural condition of the disease. After flowering, the content of the plant stem type lignin was measured, and the difference of the content of the RIL type lignin was compared, and the relationship between the resistance loci and lignin was analyzed. Fourth, the above 8 RIL were planted in the greenhouse and inoculated at the jointing stage. The Rhizoctonia of Rhizoctonia Rhizoctonia was taken for 5 days. The transcriptional amount of catalase gene and the transcriptional amount of the course related protein -1 gene of each RIL were measured by qRT-PCR method. The relationship between the 7 resistance loci and the expression of the two defense genes was analyzed. The main results were as follows: (1) in the above 7 anti sheath blight disease QTL 3 loci (QSe.cau-1AS, QSe.cau-2BS, QSe.cau-6BL) are related to plant morphological characters. They may not be directly resistant to disease, but by controlling plant morphological characteristics, affecting the humidity and other microclimate factors in the plant group, which is not conducive to the infection and spread of Rhizoctonia. It is expected not to exist in small species specialization or strain specialization, which is more lasting. Disease resistance; (2) 1 of the resistance loci (QSe.cau-7BL) were related to the content of the stem component lignin. It may be by raising lignin content and improving the mechanical strength of the stem to play the disease resistance. Therefore, it is expected that there is no small specialization or strain specialization; (3) there are 3 resistance loci (QSe.cau-2BS, QSe.cau-3BS, QSe.cau). -4AL) is related to the transcription of catalase gene and the transcriptional amount of course related protein -1, and the two is the representative marker of plant disease resistance mechanism. Therefore, these 3 anti sheath blight QTL can be used as a breakthrough point or experimental material to further study the resistance mechanism of Wheat Sheath blight. (4) there are 1 loci (QSe.caau-5DL) and the above factors. No definite correlation was found, and further study on the cause of disease resistance was necessary.
【學位授予單位】:中國農(nóng)業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:S435.12
【相似文獻】
相關(guān)期刊論文 前10條
1 潘學彪,鄒軍煌,陸駒飛,于恒秀,朱立煌;水稻抗紋枯病主效QTL_s的分子標記研究[J];揚州大學學報(自然科學版);1998年01期
2 胡春錦,李楊瑞,黃思良;水稻抗紋枯病的研究新進展[J];中國農(nóng)學通報;2004年02期
3 張先平;王曉娥;王勝寶;鄧根生;孫敏;王海潮;梁秋霞;;水稻品種抗紋枯病田間鑒定方法改進[J];中國植保導刊;2008年07期
4 陳志誼,過崇儉,戴耕耘,葛誠方;水稻中抗紋枯病品種的田間防病效果[J];江蘇農(nóng)業(yè)科學;1988年09期
5 潘學彪,陳宗祥,張亞芳,朱建,紀雪梅;水稻抗紋枯病育種成效的初步評價[J];中國水稻科學;2001年03期
6 顏偉,吳紀中,蔡士賓;小麥抗紋枯病種質(zhì)資源的鑒定與創(chuàng)新[J];福建稻麥科技;2004年03期
7 陳志誼,朱玉軍,史阿寶,周高明;中抗紋枯病組合汕優(yōu)63抗性利用的研究[J];雜交水稻;1993年03期
8 蔣彥婕;吳紀中;蔡士賓;朱芳芳;張巧鳳;;小麥抗紋枯病種質(zhì)資源的鑒定與評價[J];麥類作物學報;2013年03期
9 楊家珍;篩選水稻抗紋枯病抗源品種的研究[J];安徽農(nóng)業(yè)科學;1982年02期
10 李忠耀;早熟抗紋枯病小麥品種——西風[J];作物品種資源;1989年04期
相關(guān)會議論文 前7條
1 左示敏;殷躍軍;王輝;朱俊凱;陳宗祥;張亞芳;潘學彪;;水稻抗紋枯病主效QTL的精細定位與分子育種[A];全國植物分子育種研討會摘要集[C];2009年
2 潘學彪;;國內(nèi)外水稻抗紋枯病遺傳育種研究進展[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(上冊)[C];1999年
3 殷躍軍;左示敏;張亞芳;陳宗祥;潘學彪;;水稻抗紋枯病主效數(shù)量基因座位qSB-9的鑒定和精細定位[A];江蘇省遺傳學會第七屆代表大會暨學術(shù)研討會論文摘要匯編[C];2006年
4 張小剛;王伯初;王益川;;超聲波誘導對水稻抗紋枯病生理生化的影響[A];2008年全國生物流變學與生物力學學術(shù)會議論文摘要集[C];2008年
5 孫曉棠;盧冬冬;歐陽林娟;胡麗芳;傅軍如;邊建民;賀曉鵬;賀浩華;朱昌蘭;;利用關(guān)聯(lián)分析挖掘水稻抗紋枯病優(yōu)異等位及抗病種質(zhì)材料[A];中國作物學會2013年學術(shù)年會論文摘要集[C];2013年
6 馬繼芳;董立;高立起;甘耀進;董志平;;谷子品種抗紋枯病鑒定及抗源創(chuàng)新[A];農(nóng)業(yè)生物災害預防與控制研究[C];2005年
7 程夢蘭;黃玨;張婷婷;桓嬌嬌;董五輩;;轉(zhuǎn)細胞凋亡抑制基因p35和iap玉米抗紋枯病的研究[A];中國植物病理學會2011年學術(shù)年會論文集[C];2011年
相關(guān)重要報紙文章 前2條
1 云立;江蘇呼喚高抗紋枯病小麥品種[N];江蘇農(nóng)業(yè)科技報;2007年
2 記者 張曄 通訊員 顧亮亮;水稻抗紋枯病基因定位可挽回10%產(chǎn)量損失[N];科技日報;2009年
相關(guān)博士學位論文 前7條
1 郭彥;小麥抗紋枯病QTL的抗性因素研究[D];中國農(nóng)業(yè)大學;2017年
2 盧燎勛;抗紋枯病轉(zhuǎn)基因水稻的培育[D];華中農(nóng)業(yè)大學;2013年
3 陳江;小麥抗紋枯病QTL分析[D];中國農(nóng)業(yè)大學;2014年
4 陳燕華;水稻抗紋枯病性遺傳分析與主要性狀QTL定位[D];廣西大學;2013年
5 向s慍,
本文編號:1945131
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/1945131.html