植物毒素誘導(dǎo)甜菜夜蛾對(duì)殺蟲劑產(chǎn)生耐受性差異的機(jī)制研究
發(fā)布時(shí)間:2024-05-25 05:32
在植物-昆蟲互作中,棉酚等植物毒素通過干擾食草昆蟲的基本代謝、生化和生理途徑在植物防御中發(fā)揮重要作用。甜菜夜蛾是許多重要作物的主要害蟲,其寄主包括蔬菜、棉花和觀賞植物。在本論文中,我們研究了植物毒素對(duì)甜菜夜蛾對(duì)溴氰菊酯、氯蟲苯甲酰胺等農(nóng)藥的耐藥性的影響。采用棉酚對(duì)甜菜夜蛾幼蟲進(jìn)行飼喂預(yù)處理,再經(jīng)殺蟲劑溴氰菊酯連續(xù)篩選10代,Gos-SEL(棉酚篩選)種群產(chǎn)生了113.29倍的抗藥性。在相同條件下,Delta-SEL(溴氰菊酯篩選)種群顯示出69.76倍的抗性增加以及相關(guān)解毒酶活性的提高。同時(shí),與Gos-SEL種群和實(shí)驗(yàn)室敏感種群(SS種群)比較,發(fā)現(xiàn)Delta-SEL種群的繁殖力以及雄性和雌性壽命顯著降低。此外,與單獨(dú)使用溴氰菊酯相比,當(dāng)用溴氰菊酯和棉酚預(yù)處理的飼料喂養(yǎng)昆蟲時(shí),甜菜夜蛾中細(xì)胞色素P450的活性顯著增強(qiáng)?傊,與對(duì)照組(SS-種群)相比,在Delta-SEL和Gos-SEL種群中甜菜夜蛾的繁殖能力顯著降低。主要解毒酶細(xì)胞色素P450單加氧酶和酯酶的升高可能在棉酚誘導(dǎo)甜菜夜蛾種群提高對(duì)溴氰菊酯的耐受性中起重要作用。單寧是棉田中最重要的植物毒素之一。將單寧酸添加到人工飼料中飼...
【文章頁數(shù)】:156 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
摘要
CHAPTER1 Literature Review
1.1 Introduction of beet armyworm(Spodoptera exigua)
1.1.1 Biology and distribution
1.1.2 Geographical distribution
1.1.3 Host plants of beet armyworm
1.2 Insect-plant interaction and phytotoxins
1.3 Insect pests and pesticides
1.3.1 Overview of insect pests and insecticides
1.3.1.1 Pyrethroid insecticides
1.3.1.2 Diamide insecticides
1.3.2 Insecticides resistance in beet armyworm S.exigua
1.3.2.1 Overview of insecticides resistance mechanism in insect pests
1.3.2.2 Behavioral Resistance
1.3.2.3 Reduced penetration resistance(Delayed penetration)
1.3.3 Molecular mechanisms of metabolic base resistance to insecticides
1.3.3.1 Cytochrome P450-mediated insecticides resistance in beet armyworm
1.3.3.2 Esterase-mediated insecticides resistance in beet armyworm
1.3.3.3 Glutathione S-transferase-mediated insecticides resistance in beet armyworm
1.4 Eco-Friendly integrated pest Management approach for controlling beet armyworm S.exigua
1.4.1 Biotechnological Approaches for the management of beet armyworm
1.4.1.1 Use of RNA interference(RNAi)technique to control beet armyworm
1.4.1.2 Use of CRISPR/Cas9 technique to control beet armyworm
1.4.1.3 Use of sterilize insect technique(SIT)to control beet armyworm
1.4.2 Use of host plant resistance
1.5 Biological control
1.5.1 Cultural control practices
1.5.2 Objectives of the study
CHAPTER2 Gossypol‐induced fitness gain and increased resistance to deltamethrin in beet armyworm,Spodoptera exigua(Hübner)
2.1 Introduction
2.2 Materials and methods
2.2.1 Experimental insects rearing technique
2.2.2 Chemicals
2.2.3 Preparation of insecticide and gossypol-supplemented diets
2.2.4 Toxicity bioassays
2.2.5 Selection of gossypol& deltamethrin-resistant strains
2.2.6 Life table construction
2.2.7 Enzyme assays
2.2.7.1 Assays of P450 PNOD activities
2.2.7.2 Assays of Glutathione S-transferase(GST)activity
2.2.7.3 Esterase activity towards a-naphthyl acetate(a-NA)
2.2.8 Statistical analysis
2.2.9 Age-stage,Two-sex Life Table Analysis
2.3 Results
2.3.1 Toxicity of Gos-SEL and Delta-SEL population
2.3.2 Pre-adult developmental time for Gos-SEL and Delta-SEL strains
2.3.3 Adult longevity and growth metrics of S.exigua Gos-SEL and Delta-SEL
2.3.4 Pre-adults Pupal,Adult’s survival rate and Hatchability of the Gos-SEL and Delta-SEL population of Spodoptera exigua
2.3.5 Fitness comparison
2.3.6 Detoxification enzymes activity for Gos-SEL and Delta-SEL strains
2.3.7 Survival rate,life expectancy,reproductive value and fecundity of the Gos-SEL and Delta-SEL populations of Spodoptera exigua
2.4 Discussion
CHAPTER3 Enhanced effects of dietary tannic acid with chlorantraniliprole on life table parameters and nutritional physiology of Spodoptera exigua(Hübner)
3.1 Introduction
3.2 Materials and Methods
3.2.1 Insects breeding technique
3.2.2 Chemicals
3.2.3 Preparation of insecticide plus tannic acid-supplemented diets
3.2.4 Enhanced effects of tannic acid with of chlorantraniliprole against S.exigua
3.2.5 Effect of dietary tannic acid with chlorantraniliprole on feeding index of third-stage larvae of S.exigua
3.2.6 Measurement of nutrient contents
3.2.6.1 Total protein content
3.2.6.2 Measurement of lipid content
3.2.6.3 Carbohydrate content
3.2.7 Effect of dietary tannic acid alone and combination with chlorantraniliprole on the developmental growth and population parameters of S.exigua
3.2.8 Statistical analysis
3.2.9 Life Table Analysis
3.3 Results
3.3.1 Toxicity of tannic acid with chlorantraniliprole and tannic acid or chlorantraniliprole alone to third-stage larvae of S.exigua
3.3.2 Toxic effects of tannic acid alone and combined with chlorantraniliprole on the development and growth of S.exigua
3.3.3 Toxic effects of tannic acid alone and combined with chlorantraniliprole on the population growth parameters of S.exigua
3.3.4 Enhancement effects of tannic acid combined with chlorantraniliprole on feeding indices of S.exigua
3.3.5 Effects of tannic acid alone and combined with chlorantraniliprole on the total nutrient contents of S.exigua
3.4 Discussion
CHAPTER4 Knock-down of gossypol-inducing cytochrome P450 genes reduced deltamethrin sensitivity in Spodoptera exigua(Hübner)
4.1 Introduction
4.2 Materials and methods
4.2.1 Insect culture
4.2.2 Chemicals
4.2.3 Preparation of treatment diets
4.2.4 Toxicological analysis of deltamethrin tolerance in larvae
4.2.5 Effect of PBO on toxicity of insecticides
4.2.6 The effect of0.1%gossypol diet on bodyweight
4.2.7 Samples Preparation for P450 Enzyme Activity
4.2.8 Measurement of P450 Enzyme activity
4.2.9 Samples preparation
4.2.9.1 RNA extraction and cDNA synthesis
4.2.9.2 Quantitative real-time PCR
4.2.9.3 dsRNA Synthesis
4.2.9.4 Administration of dsRNA by Droplet-Feeding
4.2.9.5 Combined Effects of dsRNA on Mortality
4.2.9.6 Analysis of the Silencing Effect
4.2.10 Statistical Analysis
4.3 Results
4.3.1 Induced Effect of Gossypol to Deltamethrin Tolerance and Synergism Assessment
4.3.2 Effect of gossypol diet on larval body weight
4.3.3 Effect of gossypol on midgut P450 activity
4.3.4 Effect of gossypol,flavone and deltamethrin on expression response of P450 genes
4.3.5 Silencing effect of dsCYP6AB14 and dsCYP9A98 on larval mortality
4.3.6 Combined effect of target dsCYP6AB14+dsCYP9A98 genes on larval mortality
4.3.7 Effect of silencing by dsRNA
4.4 Discussion
CHAPTER5 Conclusion and Prospects
5.1 Conclusion
5.2 Prospects
References
Supplementary Appendix 1
List of Publications
Acknowledgement
本文編號(hào):3981774
【文章頁數(shù)】:156 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
摘要
CHAPTER1 Literature Review
1.1 Introduction of beet armyworm(Spodoptera exigua)
1.1.1 Biology and distribution
1.1.2 Geographical distribution
1.1.3 Host plants of beet armyworm
1.2 Insect-plant interaction and phytotoxins
1.3 Insect pests and pesticides
1.3.1 Overview of insect pests and insecticides
1.3.1.1 Pyrethroid insecticides
1.3.1.2 Diamide insecticides
1.3.2 Insecticides resistance in beet armyworm S.exigua
1.3.2.1 Overview of insecticides resistance mechanism in insect pests
1.3.2.2 Behavioral Resistance
1.3.2.3 Reduced penetration resistance(Delayed penetration)
1.3.3 Molecular mechanisms of metabolic base resistance to insecticides
1.3.3.1 Cytochrome P450-mediated insecticides resistance in beet armyworm
1.3.3.2 Esterase-mediated insecticides resistance in beet armyworm
1.3.3.3 Glutathione S-transferase-mediated insecticides resistance in beet armyworm
1.4 Eco-Friendly integrated pest Management approach for controlling beet armyworm S.exigua
1.4.1 Biotechnological Approaches for the management of beet armyworm
1.4.1.1 Use of RNA interference(RNAi)technique to control beet armyworm
1.4.1.2 Use of CRISPR/Cas9 technique to control beet armyworm
1.4.1.3 Use of sterilize insect technique(SIT)to control beet armyworm
1.4.2 Use of host plant resistance
1.5 Biological control
1.5.1 Cultural control practices
1.5.2 Objectives of the study
CHAPTER2 Gossypol‐induced fitness gain and increased resistance to deltamethrin in beet armyworm,Spodoptera exigua(Hübner)
2.1 Introduction
2.2 Materials and methods
2.2.1 Experimental insects rearing technique
2.2.2 Chemicals
2.2.3 Preparation of insecticide and gossypol-supplemented diets
2.2.4 Toxicity bioassays
2.2.5 Selection of gossypol& deltamethrin-resistant strains
2.2.6 Life table construction
2.2.7 Enzyme assays
2.2.7.1 Assays of P450 PNOD activities
2.2.7.2 Assays of Glutathione S-transferase(GST)activity
2.2.7.3 Esterase activity towards a-naphthyl acetate(a-NA)
2.2.8 Statistical analysis
2.2.9 Age-stage,Two-sex Life Table Analysis
2.3 Results
2.3.1 Toxicity of Gos-SEL and Delta-SEL population
2.3.2 Pre-adult developmental time for Gos-SEL and Delta-SEL strains
2.3.3 Adult longevity and growth metrics of S.exigua Gos-SEL and Delta-SEL
2.3.4 Pre-adults Pupal,Adult’s survival rate and Hatchability of the Gos-SEL and Delta-SEL population of Spodoptera exigua
2.3.5 Fitness comparison
2.3.6 Detoxification enzymes activity for Gos-SEL and Delta-SEL strains
2.3.7 Survival rate,life expectancy,reproductive value and fecundity of the Gos-SEL and Delta-SEL populations of Spodoptera exigua
2.4 Discussion
CHAPTER3 Enhanced effects of dietary tannic acid with chlorantraniliprole on life table parameters and nutritional physiology of Spodoptera exigua(Hübner)
3.1 Introduction
3.2 Materials and Methods
3.2.1 Insects breeding technique
3.2.2 Chemicals
3.2.3 Preparation of insecticide plus tannic acid-supplemented diets
3.2.4 Enhanced effects of tannic acid with of chlorantraniliprole against S.exigua
3.2.5 Effect of dietary tannic acid with chlorantraniliprole on feeding index of third-stage larvae of S.exigua
3.2.6 Measurement of nutrient contents
3.2.6.1 Total protein content
3.2.6.2 Measurement of lipid content
3.2.6.3 Carbohydrate content
3.2.7 Effect of dietary tannic acid alone and combination with chlorantraniliprole on the developmental growth and population parameters of S.exigua
3.2.8 Statistical analysis
3.2.9 Life Table Analysis
3.3 Results
3.3.1 Toxicity of tannic acid with chlorantraniliprole and tannic acid or chlorantraniliprole alone to third-stage larvae of S.exigua
3.3.2 Toxic effects of tannic acid alone and combined with chlorantraniliprole on the development and growth of S.exigua
3.3.3 Toxic effects of tannic acid alone and combined with chlorantraniliprole on the population growth parameters of S.exigua
3.3.4 Enhancement effects of tannic acid combined with chlorantraniliprole on feeding indices of S.exigua
3.3.5 Effects of tannic acid alone and combined with chlorantraniliprole on the total nutrient contents of S.exigua
3.4 Discussion
CHAPTER4 Knock-down of gossypol-inducing cytochrome P450 genes reduced deltamethrin sensitivity in Spodoptera exigua(Hübner)
4.1 Introduction
4.2 Materials and methods
4.2.1 Insect culture
4.2.2 Chemicals
4.2.3 Preparation of treatment diets
4.2.4 Toxicological analysis of deltamethrin tolerance in larvae
4.2.5 Effect of PBO on toxicity of insecticides
4.2.6 The effect of0.1%gossypol diet on bodyweight
4.2.7 Samples Preparation for P450 Enzyme Activity
4.2.8 Measurement of P450 Enzyme activity
4.2.9 Samples preparation
4.2.9.1 RNA extraction and cDNA synthesis
4.2.9.2 Quantitative real-time PCR
4.2.9.3 dsRNA Synthesis
4.2.9.4 Administration of dsRNA by Droplet-Feeding
4.2.9.5 Combined Effects of dsRNA on Mortality
4.2.9.6 Analysis of the Silencing Effect
4.2.10 Statistical Analysis
4.3 Results
4.3.1 Induced Effect of Gossypol to Deltamethrin Tolerance and Synergism Assessment
4.3.2 Effect of gossypol diet on larval body weight
4.3.3 Effect of gossypol on midgut P450 activity
4.3.4 Effect of gossypol,flavone and deltamethrin on expression response of P450 genes
4.3.5 Silencing effect of dsCYP6AB14 and dsCYP9A98 on larval mortality
4.3.6 Combined effect of target dsCYP6AB14+dsCYP9A98 genes on larval mortality
4.3.7 Effect of silencing by dsRNA
4.4 Discussion
CHAPTER5 Conclusion and Prospects
5.1 Conclusion
5.2 Prospects
References
Supplementary Appendix 1
List of Publications
Acknowledgement
本文編號(hào):3981774
本文鏈接:http://www.wukwdryxk.cn/shoufeilunwen/nykjbs/3981774.html
最近更新
教材專著