資本存量核算中的幾何折舊模式研究
發(fā)布時間:2018-06-15 14:45
本文選題:資本存量核算 + 合成偏差; 參考:《廣東財經(jīng)大學(xué)》2014年碩士論文
【摘要】:資本存量數(shù)據(jù)在宏觀經(jīng)濟研究中具有重要地位,資本存量核算工作的質(zhì)量直接影響到國民財富和經(jīng)濟增長核算的研究效果,但是如何準確地核算資本存量仍然是國民經(jīng)濟核算中的富有爭議的話題。目前,永續(xù)盤存法PIM被各國學(xué)者廣泛用于資本存量的核算中,PIM法在實踐運用中有兩大特點,一是關(guān)于資本折舊方式的幾何折舊假設(shè)被廣泛采用,二是鮮有文獻對這種關(guān)鍵假設(shè)是否合理做出過理論上的探討。正是這種鮮明的對比促成了本文的寫作,本文即是試圖填補這種理論空缺。 本文的論證緊緊圍繞著幾何折舊假設(shè)是否成立這一中心議題而展開,從三個角度論證了幾何折舊并不是一種常態(tài),一是利用統(tǒng)計模擬的方法揭示了一類資產(chǎn)的折舊形態(tài)與單項資產(chǎn)的折舊形態(tài)存在區(qū)別,,即存在“合成偏差”現(xiàn)象,通過這種模擬,發(fā)現(xiàn)對一類性質(zhì)相似的資產(chǎn)來說,幾何折舊并不常見;二是用數(shù)學(xué)證明了幾何折舊并不能隨便應(yīng)用于任意層次的資本分類中,從而證明了多類資產(chǎn)情形下的“合成偏差”現(xiàn)象;三是從廠商最優(yōu)資產(chǎn)利用的角度出發(fā),利用一個簡單的經(jīng)濟模型求出了代表性廠商的最優(yōu)資本的時間路徑,將該最優(yōu)資本的時間路徑與幾何折舊下的資本時間路徑對比,從而證明了幾何折舊模式并不是廠商的最優(yōu)選擇,同時還證明了學(xué)者在實證研究中發(fā)現(xiàn)的折舊率并非常數(shù)的“折舊率漂移”現(xiàn)象。 本文可能的創(chuàng)新之處在于從統(tǒng)計模擬、數(shù)學(xué)邏輯、核算邏輯及經(jīng)濟邏輯的角度從理論上闡明了資本的幾何折舊模式并非常態(tài)。
[Abstract]:Capital stock data play an important role in macroeconomic research. The quality of capital stock accounting directly affects the research effect of national wealth and economic growth accounting. However, how to accurately calculate capital stock is still a controversial topic in national accounting. At present, PIM is widely used in the accounting of capital stock by scholars from all over the world. PIM has two characteristics in practice. One is that the geometric depreciation hypothesis of capital depreciation is widely used. Second, there are few literatures on whether this key hypothesis is reasonable or not. It is this sharp contrast that leads to the writing of this thesis, which is an attempt to fill the theoretical gap. This paper focuses on the central issue of whether the hypothesis of geometric depreciation is established, and demonstrates from three angles that geometric depreciation is not a normal state. The first is to reveal the difference between the depreciation form of a class of assets and the depreciation form of a single asset by using the method of statistical simulation, that is, the phenomenon of "composite deviation". Through this simulation, it is found that for a class of assets with similar properties, Geometric depreciation is not common; second, it is proved by mathematics that geometric depreciation can not be applied to any level of capital classification, thus proving the phenomenon of "composite deviation" in the case of multiple types of assets. Thirdly, from the point of view of the optimal asset utilization of the firm, a simple economic model is used to find the time path of the optimal capital of the representative firm, and the time path of the optimal capital is compared with the time path of the capital under geometric depreciation. It is proved that the geometric depreciation model is not the best choice for the firm, and that the depreciation rate found by scholars in the empirical research is not a constant "depreciation rate drift" phenomenon. The possible innovation of this paper is to clarify theoretically that the geometric depreciation model of capital is not normal from the angles of statistical simulation, mathematical logic, accounting logic and economic logic.
【學(xué)位授予單位】:廣東財經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:F233;F224
【參考文獻】
相關(guān)期刊論文 前8條
1 黃勇峰;任若恩;劉曉生;;中國制造業(yè)資本存量永續(xù)盤存法估計[J];經(jīng)濟學(xué)(季刊);2002年01期
2 張軍,章元;對中國資本存量K的再估計[J];經(jīng)濟研究;2003年07期
3 張軍,吳桂英,張吉鵬;中國省際物質(zhì)資本存量估算:1952—2000[J];經(jīng)濟研究;2004年10期
4 胡永泰;中國全要素生產(chǎn)率:來自農(nóng)業(yè)部門勞動力再配置的首要作用[J];經(jīng)濟研究;1998年03期
5 單豪杰;;中國資本存量K的再估算:1952~2006年[J];數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究;2008年10期
6 楊文雪;國民經(jīng)濟核算中固定資本消耗價值的測算[J];統(tǒng)計與決策;2003年11期
7 薛俊波;王錚;;中國17部門資本存量的核算研究[J];統(tǒng)計研究;2007年07期
8 柯善咨;向娟;;1996—2009年中國城市固定資本存量估算[J];統(tǒng)計研究;2012年07期
本文編號:2022410
本文鏈接:http://www.wukwdryxk.cn/jingjilunwen/kuaiji/2022410.html
最近更新
教材專著