納米管低維復(fù)合結(jié)構(gòu)的制備及其光電特性研究
本文選題:陽極氧化法 + TiO_2納米管陣列; 參考:《清華大學(xué)》2015年博士論文
【摘要】:納米管具有中空結(jié)構(gòu)、比表面積大、吸附能力強(qiáng)等優(yōu)點(diǎn),與其它一維納米材料相比,對(duì)外界環(huán)境和外場更加敏感。本論文以陽極氧化法制備的TiO_2納米管陣列和化學(xué)氣相沉積(CVD)法制備的雙壁碳納米管為基礎(chǔ),設(shè)計(jì)、制備了幾種低維復(fù)合結(jié)構(gòu),深入研究了這些復(fù)合結(jié)構(gòu)在光場和電場作用下的輸運(yùn)特性。利用掃描電子顯微鏡對(duì)納米結(jié)構(gòu)的微觀形貌進(jìn)行了觀察和表征。首先,采用“兩步”陽極氧化法制備出高度有序的TiO_2納米管陣列,其長度可以通過氧化電壓和生長時(shí)間進(jìn)行控制。對(duì)無定型TiO_2納米管陣列進(jìn)行退火處理,得到了銳鈦礦TiO_2納米顆粒膜。以碳納米管膜為頂電極,制備了碳納米管/TiO_2納米管陣列異質(zhì)結(jié)光電探測器,利用TiO_2的阻變效應(yīng),提出一個(gè)提高探測器性能的新方法,即通過預(yù)先電處理,使其從高阻態(tài)轉(zhuǎn)變?yōu)榈妥钁B(tài),光電測試結(jié)果表明:零偏壓下,探測器在532 nm和1064 nm激光照射下的光響應(yīng)度都顯著提高。其次,分別在空氣中和真空中詳細(xì)研究了碳納米管膜的光電導(dǎo)性質(zhì),樣品表現(xiàn)出強(qiáng)烈的光波長依賴特性?諝庵,碳納米管膜的光電導(dǎo)為負(fù),這是由O_2的光解吸附效應(yīng)造成的,光波長越短,解吸附效應(yīng)越顯著。真空中,在405 nm和532 nm激光照射下,光電導(dǎo)轉(zhuǎn)變?yōu)檎?而在1064 nm激光照射下,光電導(dǎo)仍然為負(fù),表面等離激元和電子的相互作用是造成負(fù)光電導(dǎo)的主要原因。通過改變光波長,即可調(diào)節(jié)光電導(dǎo)的大小和正負(fù),這對(duì)設(shè)計(jì)基于碳納米管的光電器件具有重要的指導(dǎo)意義。利用碳納米管的超寬帶光譜響應(yīng)能力,制備了碳納米管/金屬異質(zhì)結(jié)室溫太赫茲探測器,實(shí)現(xiàn)了對(duì)太赫茲輻射(2.52 T)的自驅(qū)動(dòng)(零偏壓)光探測,電壓光響應(yīng)度和電流光響應(yīng)度分別達(dá)到22 mV/W和166.7mA/W。最后,制備了由碳納米管膜和RbAg4I5快離子導(dǎo)體膜構(gòu)成的離子-電子混合導(dǎo)體復(fù)合結(jié)構(gòu),其中碳納米管提供電子傳輸通道,RbAg4I5提供銀離子傳輸通道。在界面附近,由于庫侖相互作用,形成“離子-電子束縛態(tài)”,導(dǎo)致復(fù)合結(jié)構(gòu)的電導(dǎo)顯著減小;而在外電場或光場作用下,部分“離子-電子束縛態(tài)”被解離,引起電導(dǎo)增大,實(shí)現(xiàn)了銀離子對(duì)碳納米管中電子輸運(yùn)的調(diào)控。在此基礎(chǔ)上,制備了基于離子-電子相互作用的新型電子器件,類似于傳統(tǒng)的場效應(yīng)管,通過改變柵壓可以線性調(diào)控漏源電流的大小。
[Abstract]:Nanotubes have the advantages of hollow structure, large specific surface area, strong adsorption ability and so on. Compared with other one-dimensional nano-materials, nanotubes are more sensitive to the external environment and external field. Based on TiO-2 nanotube arrays prepared by anodic oxidation method and double-walled carbon nanotubes prepared by chemical vapor deposition (CVD) method, several low-dimensional composite structures were designed and fabricated in this paper. The transport characteristics of these composite structures under the action of light field and electric field are studied. Scanning electron microscopy (SEM) was used to observe and characterize the microstructure. Firstly, a highly ordered TIO _ 2 nanotube array was prepared by "two-step" anodic oxidation method, the length of which can be controlled by oxidation voltage and growth time. Anatase TiO2 nanocrystalline films were obtained by annealing the amorphous TiO-2 nanotube arrays. Using carbon nanotube film as the top electrode, the carbon nanotube / TIO _ 2 nanotube array heterojunction photodetectors were prepared. A new method to improve the performance of the detector was proposed by using the resistive effect of TIO _ 2. The photoelectronic measurement results show that the photo-responsivity of the detector under the irradiation of 532nm and 1064 nm laser is significantly improved at zero bias voltage. Secondly, the photoconductive properties of carbon nanotube films were studied in air and vacuum respectively. In the air, the photoconductivity of the carbon nanotube film is negative, which is caused by the photodesorption effect of O _ s _ 2. The shorter the optical wave length, the more significant the desorption effect is. Under the irradiation of 405nm and 532nm laser, the photoconductivity is positive, but the photoconductivity is still negative under the irradiation of 1064 nm laser. The interaction of surface isotherms and electrons is the main cause of the negative photoconductivity. By changing the wavelength of light, the size and the positive and negative photoconductivity can be adjusted, which is of great significance for the design of photovoltaic devices based on carbon nanotubes. Based on the ultra-wideband spectral response of carbon nanotubes (CNTs), a room temperature terahertz detector with carbon nanotubes / metal heterostructures has been fabricated. The self-driving (zero-bias) optical detection of THz radiation (2.52 T) has been achieved. The voltage-light responsivity and current-light responsivity are 22 MV / W and 166.7 Ma / W, respectively. Finally, a composite structure consisting of carbon nanotube film and RbAg4I5 fast ion conductor membrane was prepared, in which carbon nanotubes provide electron transport channel and RbAg4I5 provide silver ion transport channel. Near the interface, due to the Coulomb interaction, a "ion-electron bound state" is formed, which results in a significant decrease in the conductance of the composite structure, while under the action of an external electric field or a light field, part of the "ion-electron bound state" is dissociated, resulting in the increase of the conductivity. The electron transport in carbon nanotubes was regulated by silver ions. On this basis, a novel electronic device based on ion-electron interaction is fabricated, which is similar to the conventional FET, and the leakage current can be adjusted linearly by changing the gate voltage.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 侯茹;任兆玉;;硅納米管的研究進(jìn)展[J];宜春學(xué)院學(xué)報(bào);2009年06期
2 賴躍坤,孫嵐,左娟,林昌健;氧化鈦納米管陣列制備及形成機(jī)理[J];物理化學(xué)學(xué)報(bào);2004年09期
3 李靜玲;陳文哲;劉明會(huì);張志剛;;Al_2O_3-TiO_2納米管制備研究[J];材料開發(fā)與應(yīng)用;2007年05期
4 李春陽;劉兵;王江峰;趙建坡;胡彬彬;杜祖亮;;鐵酸鉍納米管陣列與Y型鐵酸鉍納米管的合成及表征[J];科學(xué)通報(bào);2008年19期
5 劉志鋒;雅菁;鄂磊;;電沉積種子層化學(xué)控制生長氧化鋅納米棒和納米管[J];無機(jī)化學(xué)學(xué)報(bào);2009年06期
6 唐元洪;裴立宅;;硅納米管的理論及制備研究進(jìn)展[J];材料導(dǎo)報(bào);2009年23期
7 凌世盛;王玲;薛建軍;王兆崴;孔令國;楊慧;陳玉蘭;;CdS/TiO_2納米管陣列的制備及其光電催化活性研究[J];功能材料;2010年11期
8 程磊;江常龍;;氧化鋅納米棒及納米管陣列薄膜的制備[J];中國陶瓷工業(yè);2011年02期
9 朱文;劉喜;柳慧瓊;仝大利;楊君友;彭江英;;氧化鈦納米管陣列的表面聚集控制及光電化學(xué)特性[J];稀有金屬材料與工程;2011年06期
10 孫大春;王麗萍;郭進(jìn);李伊荇;李明輝;付烏有;楊海濱;;NiO/TiO_2納米管陣列異質(zhì)結(jié)電極的制備及光電化學(xué)性能[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2011年06期
相關(guān)會(huì)議論文 前10條
1 張敏;閆國田;楊建軍;;MoO_3/TiO_2納米管陣列薄膜的制備及光電性能研究[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第12分會(huì)場摘要集[C];2010年
2 楊亮;曹陽;;高有序氧化鈦納米管陣列膜的制備[A];2008年中國機(jī)械工程學(xué)會(huì)年會(huì)暨甘肅省學(xué)術(shù)年會(huì)文集[C];2008年
3 李高仁;王安良;許瀚;;多壁納米管陣列電催化劑的設(shè)計(jì)、合成及其催化性能研究[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第23分會(huì):電催化與潔凈能源電化學(xué)轉(zhuǎn)化[C];2014年
4 趙成龍;慕成;徐東升;;硅納米管陣列的制備及其應(yīng)用[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
5 黃鳳翔;鐘秋菊;肖信;舒東;南俊民;;CuO/TiO_2納米管陣列薄膜電極的制備及光電性能[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
6 甘嘉永;徐明;趙栩楓;謝世磊;盧錫洪;瞿俊雄;童葉翔;;CdS/TiO_2納米管陣列的電化學(xué)構(gòu)筑及其在光電化學(xué)池中的應(yīng)用[A];低碳技術(shù)與材料產(chǎn)業(yè)發(fā)展研討會(huì)論文集[C];2010年
7 王sヶ,
本文編號(hào):2047408
本文鏈接:http://www.wukwdryxk.cn/kejilunwen/cailiaohuaxuelunwen/2047408.html